

Revised: 13 November 1996

Software Development Kit

release 2

for Macintosh

version

TM

Adobe After Effects 3.1

Adobe After Effects Software Development Kit

2

Adobe After Effects 3.1 Software Development Kit r2
Copyright © 1992–96 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document. The software described in this document is
furnished under license and may only be used or copied in accordance with
the terms of such license.

Adobe, Adobe After Effects, Adobe Premiere, Adobe Photoshop, Adobe
Illustrator, Adobe Type Manager, ATM and PostScript are trademarks of
Adobe Systems Incorporated that may be registered in certain jurisdictions.
Macintosh and Apple are registered trademarks, and Mac OS is a trademark
of Apple Computer, Inc. Microsoft, Windows are registered trademarks of
Microsoft Corporation. All other products or name brands are trademarks of
their respective holders.

Most of the material for this document was derived from work by Russell
Belfer, David Herbstman, David Simons, and Daniel Wilk. It was then
compiled, edited, and reformatted into its current form by Brian Andrews.

Version History

January 1993 Russell Belfer Version 1.0 – Initial SDK release.

January 1994 Dan Wilk Version 2.0 - Updates.

August 1994 Dave Herbstman
Dan Wilk

Version 2.0.1 – PowerPC Update.

5 March 1996 Brian Andrews Version 3.0 – Preliminary release
for the After Effects developer
kitchen.

21 June 1996 Brian Andrews Version 3.1 – Final 3.x release.

13 November 1996 Brian Andrews Version 3.1r2 - Minor updates.

Contents

Contents

1 Introduction . 5
How to Use This Guide . 5

About This Guide . 6

Changes Since the Last Release . 7

2 Plug-In Overview . 8
The After Effects Pipeline . 8

Key to the Diagram . 9

Where Plug-ins Are Found . 10

How Plug-ins Are Invoked. 10

Writing Plug-ins . 12

Command Selectors . 12

Global Commands . 13

Sequence Commands . 14

Frame Commands . 14

User Interface Command . 15

3 Plug-In Resources . 16

4 Effects Filters. 17
Effect Input. 17

PF_InData Structure . 17

PF_ParamsList Array of Parameter Descriptions 20

Effect Output . 22

PF_OutData Structure . 22

PF_OutFlags . 24

PF_LayerDef Structure . 27

Callbacks . 28

User Interaction Related Callbacks . 28

Kernel Flags . 30

Graphics Utility Callbacks . 31

Intrinsic Callbacks . 37

ANSI Callbacks . 38

Colorspace Conversion Callbacks . 39

5 Custom User Interface 41
Getting UI Events . 41

PF_Context Structure . 42

Event Types (PF_EventType) . 43

Event Unions (PF_EventUnion) . 44

Click Event . 44

Draw Event . 44

Key Down Event . 45

Effect Window Information (PF_EffectWindowInfo) 45
Adobe After Effects Software Development Kit 3

Contents

UI Callbacks (PF_EventCallbacks) . 46

6 Input and Output Plug-Ins 48
Resource Structures . 48

‘PiPL’ Resource Structure . 48

‘FXMF’ PiPL Atom . 48

Interface Record Structure . 49

Time Extension Structures. 49

Calling Sequences . 52

Other notes . 53

7 Special Considerations 54
Extent Rects . 54

Alpha Channels . 55

Parameter Situations . 55

Sequence Data . 55

Error Handling . 56

Debugging . 56

Be Responsive . 56

Adding Parameters . 56

Index . 58
Adobe After Effects Software Development Kit 4

1

Introduction

1 Introduction
Welcome to the Adobe After Effects 3.1 Software Development Kit, release
2, for the Macintosh! Adobe After Effects supports plug-in modules for
applying special effects to images and for performing file input and output.
Effects modules can appear in the Effect menu or the render queue of the
program, and the controllers (sliders, pop-ups, etc.) that configure the effect
appear in an Effect floater. File I/O modules appear in the File menu. This
document describes the programming interface to plug-in effects along with
new custom user interface elements. It also describes how Adobe After
Effects supports the Adobe Photoshop plug-in interface for file input/output
and effects filters.

The interface to Adobe After Effects plug-ins is somewhat similar to the one
used in Adobe Photoshop, authors of Photoshop filters should be able to get
up to speed quickly with After Effects plug-ins. However, just as Photoshop
plug-ins were completely different in detail from the Silicon Beach plug-ins
that preceded them (see the historical note in “Writing Plug-in Modules for
Adobe Photoshop™,” by Thomas Knoll), so too, After Effects’ plug-ins are
completely different from Photoshop’s. We add support for time-varying
parameters, application integrated plug-in parameter control, and a library
of graphical utility callbacks, and we eliminate the virtual memory
complications and varying image data representations.

This guide assumes that you are proficient in C language programming and
tools. The source code files in this toolkit are written for the Metrowerks
CodeWarrior software development environment.

You should have a working knowledge of Adobe After Effects and
understand how plug–in modules work from a user’s viewpoint. This guide
assumes you understand After Effects and basic video editing terminology.

How to Use This Guide

There are four places to look to learn about Adobe After Effects plug-ins.

• First, you should already be familiar with the Adobe After Effects
program — if not, you should review the After Effects manual and/or the
new Adobe After Effects Classroom in a Book. Understanding movies,
time-varying parameters, alpha channel, and the After Effects model of
applying effects is vital to understanding this plug-in spec.

• Second, this SDK Guide gives an overview and much specific information
about writing plug-ins. A quick read of this document is a good next
step once you have some knowledge of the program itself.

• Third, the header files are extensively commented. To fully understand
the plug-in spec, you will have to become at least mildly familiar with
those files. Hopefully you will find them quite readable. Much of the
information in the headers is also in this document, but some details are
presented only in the header files.
Adobe After Effects Software Development Kit 5

Introduction

The header files that describe the Adobe After Effects plug-in
specification are AE_Effect.h, AE_EffectCB.h, and AE_EffectUI.h. The
letters ‘PF’ (at one point in After Effects’ development cycle effects were
called “filters”, hence the PF) and an underscore are used as a prefix for
constants, types, macros, and routines defined by in the header files. For
example, rather than defining a type ParameterBlock, we would call it
PF_ParameterBlock. This will make it easy to distinguish the definitions
that come from our header files from those that you make.

• Fourth, the sample code is the best place to start when actually writing a
plug-in (at least for beginners). It’s easier to modify than to create from
scratch, and the samples provide working examples of some of the
detailed aspects of the spec that can be hard to understand the first few
times through.

This toolkit documentation starts with information that is common to all the
plug-in types. The rest of the document is broken up into chapters specific to
plug-in types.

Chapter 2 presents a Plug-In Overview which describes the attributes
common to all After Effects plug-ins such as where they are found, how they
are invoked, and the command selectors. This information is essential to
writing After Effects plug-ins and is the section you should read next.

Chapter 3 points to information about the Plug-In Resources PiPL (Plug-In
Property List) and ANIM. Starting with After Effects 3.0, all plug-ins
communicate their attributes to After Effects using the PiPL resource. ANIM,
which is a type of PiPL atom supported exclusively by After Effects, allows
Photoshop Plug-ins to have a time based component so their effect can be
varied over time. This information is also essential and should be read
following chapter 2.

Chapter 4 dives into the details of writing Effects Filters. This is the bulk of
the contents of this SDK and will be applicable to most After Effects plug-in
developers.

Chapter 5 describes how to incorporate Custom User Interface elements into
your plug-ins. This information is optional and is of interest if you wish to
extend and customize the look of your plug-ins.

Chapter 6 describes how to write Input and/or Output Plug-Ins. This
information is optional and only applicable to developers wishing to write
plug-ins to add file formats not supported by the core After Effects program.

Finally chapter 7, Special Considerations, contains some pointers and advice
on how to deal with parts of the After Effects plug-in API which are
especially tricky. This is recommended reading after looking at chapter 2, 3,
and 4.

About This Guide

This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger font family is used throughout the manual with Courier used for
code examples.

To print this manual from within the Adobe Acrobat Reader, select the
“Shrink to Fit” option on the Print dialog.
Adobe After Effects Software Development Kit 6

Introduction

Changes Since the Last Release

This is the second release of the After Effects 3.1 SDK for Macintosh. It
contains a few bug fixes and documentation clarifications. It also identifies a
common parameter problem reported by several developers, and offers the
solution. See the new section "Adding Parameter" in chapter 7 for the
details.
Adobe After Effects Software Development Kit 7

2

Plug-In Overview

2 Plug-In Overview
This chapter should get you started in understanding how After Effects plug-
ins operate. This information is universal to all the After Effects plug-in
types.

The After Effects Plug-in API has undergone substantial revision for release
3.0 and 3.1 of the product. There are no API differences between the 3.0 and
3.1 releases. The 3.x API is not backwards compatible to 2.0, so older plug-ins
must be modified to work with After Effects 3.x. Fortunately, we think you’ll
find this a straight forward conversion.

The After Effects Pipeline

The following diagram depicts the After Effects pipeline and where plug-ins
fit into the picture. There is a key following the diagram which explains
some of the symbols.
Adobe After Effects Software Development Kit 8

Plug-In Overview

Key to the Diagram

Cache – The item cache buffer (at the top of the diagram) holds a source item
after retrieval. This helps to avoid rerendering compositions, costly 3-2
pulldown, and frame blending. A post filter cache (toward the bottom) avoids
rerendering effects and speeds compositing.

Mask – Bezier shapes with feathering are matted with an existing alpha
channel.

Geometry – Provides affine transformations (scaling, rotation, etc.) with
motion blur including resampling and subpixel positioning.
Adobe After Effects Software Development Kit 9

Plug-In Overview

Where Plug-ins Are Found

When launched, After Effects looks for plug-ins in all sub-folders of the
folder where the application itself resides. It will recursively descend into all
folders up to 10 levels deep — aliases will also be traversed. This lets the
user organize the plug-ins however they want and keep aliases to folders of
plug-ins. Folders with names surrounded in parentheses (e.g. ‘(old plug-ins)’)
or proceeded by the symbol ¬ are not scanned.

To identify After Effects and Photoshop plug-ins, After Effects now looks for
a PiPL (or Plug-in Property List) resource. This resource (which is the subject
of the next chapter) describes the various attributes and capabilities the
plug-in supplies. The author is free to include any other resources in the
plug-in file for use by the plug-in.

How Plug-ins Are Invoked

A key to understanding the Adobe After Effects plug-in spec lies in
recognizing that After Effects does not immediately process image data
when the user chooses an effect. Instead, After Effects adds the effect to a
model of what the user wants done. Only when the output of the effect is
needed to make a movie or to update the screen does After Effects attempt
to apply the effect.

After Effects can view a plug-in with different scopes. If the user applies the
same effect in multiple places throughout the project, After Effects creates
multiple “instances” of the effect in the model. Each instance is responsible

Blend – Combines layers into a composition, this includes compositing,
Photoshop transfer modes, and track mattes.

eFKT – This is an After Effects effects filter for manipulating pixel images. This
is a plug-in which you can write. There can be an unlimited number of these,
the writing of which is the primary topic of this document.

8BFM – This is a Photoshop filter, which may or may not contain an ANIM
property. Photoshop filters with an ANIM property can be varied over time.
Please refer to the Adobe Photoshop Plug-In Software Development Toolkit
for information on writing Photoshop filters. The companion document
entitled Cross-Application Plug-in Development Resource Guide contains
information on the ANIM property.

Layer Parameters

Track Matte

8BIF – This is a standard Photoshop I/O plug-in.

FXIF – This is an After Effects I/O plug-in. This is essentially an 8BIF plug-in
which has been extended for After Effects. These are described in chapter 6
of this document.
Adobe After Effects Software Development Kit 10

Plug-In Overview

for a sequence of single frames over time. All instances of the effect can
share global data. Each instance can share data between all frames in its
sequence. Ultimately, the effect is invoked to render a single frame of data.
(There is an interesting parallel to the C++ language here: each effect
defines a class, each application of the effect creates an instance, and a
specific method of that instance is invoked to render each single frame.)

Now is a good time to provide a short explanation of a term you will see
later on: flattening handles. When Adobe After Effects writes a project with
sequence data out to disk, it records each plug-in’s sequence specific data
into the file. In each case the data is assumed to be a handle that you have
allocated (if it is not NULL) containing your information. If you have other
pointers or handles within that data block, when the data is read back in
from disk, those pointers will be invalid. The data block is not simply one
contiguous block of information. Because this type of complex structure is
sometimes unavoidable, After Effects has a notion of flattening sequence
shared data before recording it to disk. When the effect is asked to flatten a
handle, it should make all information into one contiguous block from which
it can later recover the old structure. When this block is read in from disk,
the effect will be given the opportunity to unflatten the data before it is
expected to do any rendering work.

To invoke an effect, Adobe After Effects looks at the PiPL to find the entry
point of the code. Every plug-in has a single entry point with selectors
indicating the desired operation.

Here is the prototype for the entry point of a plug-in:

PF_Err main (
PF_Cmd cmd,
PF_InData *in_data,
PF_OutData *out_data,
PF_ParamList params,
PF_LayerDef *output,
void *extra);

The cmd parameter is a selector for the requested plug-in function.

The in_data parameter points to a parameter block of information that the
plug-in may wish to use. In this parameter block (among other things) are
function pointers that provide a variety of interface and image manipulation
services to the plug-in.

The out_data parameter points to a parameter block of output values that
the plug-in can set to communicate various things back to the application.

The params parameter points to an array of structures that describe the
values of the plug-in’s parameters at the time of the current invocation. This
first of the parameters (params[0]) describes the input image upon which the
effect is to act. These params settings will only be valid for certain function
selectors and are set by the application user to configure the effects of the
plug-in.

The output parameter points to the output image — the effect sets this
image to altered contents of the input image. Again, this parameter will
only be valid for certain function selectors.

The extra parameter is new in 3.x and is used by plug-ins incorporating a
custom user interface. This will be described in chapter 4 and 5 for the
callbacks which use it.
Adobe After Effects Software Development Kit 11

Plug-In Overview

The return value of the routine is a 32-bit integer value. It can either be a
sign-extended standard Macintosh OS error code or one of a variety of
values defined in the effects header file.

Writing Plug-ins

The easiest way to write plug-ins is to modify already existing plug-in source
code. There are many details of the After Effects plug-in spec with which the
beginning effect writer need not be concerned. We provide a couple of
sample effects from which you can build your own. In particular, you will
probably want to duplicate our main selector dispatch routine and copy and
paste together pieces of the parameter definition sub-routine.

On 68K based Macintoshes, plug-ins are code resources. This causes a variety
of problems with global variables, with multi-segment code resources, and
with jump tables. We recommend using Metrowerks CodeWarrior for plug-in
development, setting up the A4 register for global accesses (if you need
them at all) and using CodeWarrior’s EnterCodeResource()/
ExitCodeResource() protocol. If you feel you have a deep understanding of
the nature of code resources, you are welcome to write plug-ins using MPW,
or any other development system you like (provided you can access functions
with C calling conventions). We provide plug-ins with a pointer to the
QuickDraw globals in case the plug-in needs access to them.

On PowerPC based Macintoshes, plug-ins are code fragments and thus avoid
the issues described above.

Adobe After Effects plug-ins can assume a 68020 or faster processor and
System 7.0 or later (and thus 32-bit QuickDraw). Unlike the previous version
of After Effects, version 3.x will run with or without QuickTime installed. The
application also tells the plug-in whether there is a math co-processor, and
there are certain conventions for plug-ins that require one (sample code will
be given). After Effects 3.x requires an FPU, this isn’t likely to change, but
it’s a good idea to check anyway.

Command Selectors

The plug-in will typically be invoked many times in a given run of After
Effects, for many different reasons. The cmd parameter (see above) indicates
what After Effects wants from the plug-in during any given invocation. As
mentioned above, there are three scopes of invocation. The first is the
global scope. Global commands manipulate data that will be shared
everywhere that the effect is applied in a project. Next is the sequence
scope. Sequence commands work with data that will be shared between
every frame in a single sequence to which the effect has been applied. The
difference between global commands and sequence commands is that global
commands have no information about the size of the image to which they
are applied, whereas sequence commands known they are being applied to a
particular size and duration movie. Finally there are frame commands. These
are responsible for actually producing a single rendered frame with the
effect applied.

The Adobe After Effects command selectors are:
Adobe After Effects Software Development Kit 12

Plug-In Overview

PF_Cmd_ABOUT
PF_Cmd_GLOBAL_SETUP
PF_Cmd_GLOBAL_SETDOWN
PF_Cmd_PARAMS_SETUP

PF_Cmd_SEQUENCE_SETUP
PF_Cmd_SEQUENCE_RESETUP
PF_Cmd_SEQUENCE_FLATTEN
PF_Cmd_SEQUENCE_SETDOWN

PF_Cmd_DO_DIALOG
PF_Cmd_FRAME_SETUP
PF_Cmd_RENDER
PF_Cmd_FRAME_SETDOWN
PF_Cmd_PARAMS_UPDATE

PF_Cmd_EVENT

Of these, PF_Cmd_ABOUT, PF_Cmd_GLOBAL_SETUP,
PF_Cmd_PARAMS_SETUP, and PF_Cmd_RENDER are required and must be
handled in every After Effects plug-in.

In general, on program startup, effect modules will receive the
GLOBAL_SETUP and the PARAMS_SETUP selector. Each time the user chooses
an effect to apply to a layer (i.e. adds an effect to the description), the
effect will receive the SEQUENCE_SETUP selector. To render a frame, After
Effects sends FRAME_SETUP, then RENDER, then FRAME_SETDOWN. The
SEQUENCE_SETDOWN selector is sent when quitting or when the user de-
applies an effect. SEQUENCE_RESETUP is potentially sent when an After
Effects project is loaded in from disk or when a layer is significantly
reconfigured. The FLATTEN selector may be sent when the After Effects
project is written out to disk. ABOUT is sent when the user chooses About…
from the Effect menu.

Next we examine the selectors in a little more detail.

Global Commands

PF_Cmd_ABOUT When the effect gets this command, it should display an
information dialog box about the effect module. The easiest
thing to do is use the PF_SPRINTF callback (see Callbacks in
the next chapter) to write the info into the out_data-
>return_msg field (see PF_OutData description in the next
chapter). Adobe After Effects will bring up a simple
undecorated modal dialog with your About… text proudly
displayed. Please include the version number of your effect
in the abort dialog. The About command could be sent at
any time, so the effect cannot use global data or anything
else. (Except, as always, the current resource file will be set
to your effects module.)

PF_Cmd_GLOBAL_SETUP

When you get this command, you should set any of the
necessary output flags or PF_OutData fields (described in the
next chapter). You should also set the my_version field to the
version of your plug-in.

PF_Cmd_GLOBAL_SETDOWN

You should free any global data you have allocated when
you get this command.
Adobe After Effects Software Development Kit 13

Plug-In Overview
PF_Cmd_PARAMS_SETUP

Here you should describe any parameters your effect uses by
invoking the PF_ADD_PARAM callback described below. This
selector is sent after global setup. It also describes to After
Effects any kind of custom UI elements you may be using.

Sequence Commands

PF_Cmd_SEQUENCE_SETUP

This is sent when the effect is first applied to a layer. A
sequence is a series of images that will all be of the same size
and in the same context. You can allocate sequence data at
this time — many of the PF_InData input fields are defined
at this time. See the PF_InData description in the next
chapter.

PF_Cmd_SEQUENCE_RESETUP

This is sent when something significant about the PF_InData
changes — for instance, the input image size is altered. The
parameters that the user has set are still being applied; this
message gives the effect a chance to re-adjust sequence data
to the new sequence information if that is needed. Also, this
selector is passed as the opportunity to unflatten flat
sequence data when a project is first read in from disk — see
the example code for unflattening sequence data.

PF_Cmd_SEQUENCE_FLATTEN

This selector is passed to flatten unflat sequence data so it
can be written to disk. See the
PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING flag
below. After the data is flattened, free the unflat data and
set the out_data->sequence_data to the new flat data.

PF_Cmd_SEQUENCE_SETDOWN

You should free any sequence data you have allocated when
you get this command. After the memory has been freed,
you should set the in_data and out_data pointers to null.

Frame Commands

PF_Cmd_DO_DIALOG This command indicates the Options button or a menu
command has been selected and the effect should bring up
its options dialog. This command will only be sent it the
effect has indicated that it has an options dialog with
PF_OutFlag_I_DO_DIALOG flag (described in the next
chapter).

PF_Cmd_FRAME_SETUP

This is sent immediately before each frame is invoked. You
can allocate frame data at this time, if you wish, or you can
just wait for the RENDER which will immediately follow. If
your effect changes the size of its output buffer (like the
Drop Shadow effect), you must specify your output height,
width, and relative origin at this command. All of your
parameters except the input layer will be valid at this time. If
Adobe After Effects Software Development Kit 14

Plug-In Overview
you set width and height to 0, the After Effects rendering
pipeline will ignore this scope altogether.

PF_Cmd_RENDER This is the call to render the frame. All fields in the PF_InData
will be valid at this time and you can inquire parameters or
what-have-you. This should set the output frame with the
new image data. This is the main action command. This will
occur once in After Effects for each time the FRAME_SETUP
selector is called, except when you resize the output buffer
to be (0,0). If this selector does not complete before the user
interrupts, the rendering will be canceled and the rendering
results will not be used.

PF_Cmd_FRAME_SETDOWN

If you allocated frame data in PF_Cmd_FRAME_SETUP, this is
the time to free it and clean up after rendering the frame.

PF_Cmd_PARAMS_UPDATE

In After Effects 3.0 this command is never sent. This
command would be sent if you set the
PF_OutFlag_SEND_PARAMS_UPDATE flag (see below). This
would allow you to modify the params array contents to
change the display of parameters. This command would be
sent whenever the user interacts with the parameter
controllers. Changing param values in this way is called
“parameter supervision.”

User Interface Command

PF_Cmd_EVENT This command makes use of the extra parameter mentioned
above. This is a command to handle an event indicated by
the event type field, which is a member of the structure
pointed to by extra. See chapter 5 for further information.
Adobe After Effects Software Development Kit 15

3

Adobe After Effects Software Development Kit 16

Plug-In Resources

3 Plug-In Resources
As mentioned earlier, as of release 3.0 After Effects plug-ins must include a
PiPL (Plug-in Property List) resource. This was taken from Photoshop which
originated the PiPL resource. There are two major aspects of PiPL in which to
be aware.

• All After Effects plug-ins must include a PiPL resource which identifies
the plug-in and provides flags and other static properties that control
the operation of the plug-in.

• While After Effects can load and apply Photoshop 3.0.4 or earlier effects
filters, the filter settings are static. That is, when applying the filter to
an object, the filter settings cannot be altered over time. However,
Photoshop effects filters can be made After Effects savvy, which allows
their settings to be altered, or dynamically interpolated over time, by
adding an ANIM property to their PiPL resource.

For detailed information on both of these topics, please refer to the
companion document entitled Adobe Graphic Application Products, Cross-
Application Plug-in Development Resource Guide. Chapters 3 and 4 of this
document cover After Effects specific information.

As you look at the sample plug-ins included with this SDK you be able to see
how its PiPL is constructed. It’s highly recommended you use a resource
editing program like Resorcerer along with the supplied PiPL template for
viewing the examples. ResEdit cannot visually edit a PiPL resource.

4Effects Filters
4 Effects Filters
This chapter gets into the details of writing an effects filter. While reading
this material you might want to have the SDK sample code and headers
alongside as there are several effects plug-ins which demonstrate many of
these concepts.

There are two structures each for input and output. The PF_InData
parameter block and the PF_ParamsList array of parameter descriptions are
the input to the effect. The PF_OutData parameter block and the output
image PF_LayerDef are the output from the effect. These are described next.

Effect Input

The input parameters of an effect are the image to which it is applied, and
any sliders, pop-ups, check boxes, angles, points, colors, or whatever other
parameters the effect defines that the user can control and manipulate over
time. These parameters are passed in the PF_ParamsList array of structures.
Everything else is passed in the PF_InData structure.

PF_InData Structure
Here is the format of the PF_InData structure, a description of the fields
follow. Please note that this structure is read-only, After Effects will ignore
any changes you may make to it.

typedef struct {
PF_InteractCallbacks inter;
void *utils;
PF_ProgPtr effect_ref;
PF_Quality quality;
PF_SpecVersion version;
long serial_num;
long appl_id;
long num_params;
long reserved;
long what_cpu;
long what_fpu;
PF_QDGlobals *qd_globals;
long current_time;
long time_step;
long total_time;
long local_time_step;
long time_scale;
PF_Field field;
PF_Fixed shutter_angle;
long width;
long height;
Rect extent_hint;
long output_origin_x;
long output_origin_y;
PF_RationalScale downsample_x;
PF_RationalScale downsample_y;
PF_RationalScale pixel_aspect_ratio;
PF_InFlags in_flags;
Handle global_data;
Adobe After Effects Software Development Kit 17

Effects Filters
Handle sequence_data;
Handle frame_data;

} PF_InData;

On receiving any given PF_Cmd, only certain fields in the input block will
have valid values. Each field described below tells when it is valid. The fields
of this structure represent the following:

inter This is a structure containing callbacks related to user
interaction. This structure contains the callbacks to add
parameters, to check if the user has interrupted the effect, to
display a progress bar, and to inquire parameter values at
times other than the current time being rendered. The
details of these callbacks are given below in the Callbacks
section. When each callback can validly be executed is
described there.

utils This is a pointer to a block of useful graphical and
mathematical callbacks provided for the effects module. The
definition of this block is in the AE_Effect.h file. This field is
a void *, which can be confusing. See AE_EffectCB.h for
macros to use these functions. This pointer will be defined at
all times. The descriptions of these utility callbacks are below
in the Callbacks section.

effect_ref This is an opaque piece of data that needs to be passed to
most of the various callback routines. Don’t worry about it.
(Be happy about it.)

quality This is set to one of the PF_Quality constants (PF_Quality_HI
or PF_Quality_LO) to describe the Quality currently chosen by
the user. Ideally, your effect should do a faster version with
LO quality, and a better, “broadcast”-able version with HI
quality. Also, some of the graphics utility callbacks perform
differently between LO and HI quality. This field is defined
for all PF_Cmds related to SEQUENCE and FRAME (obviously,
including RENDER).

version This is the version of the effects spec with which you are
being invoked. This will be set in GLOBAL_SETUP, in which
you specify the spec version you need to run successfully and
the version you would like to being run with.

serial_num This is the serial number of the invoking application. Use this
information as you desire.

appl_id This is the identifier of the invoking application. It will be the
creator long of the app — for Adobe After Effects that is
‘FXTC’.

num_params This is set to the number of input parameters you are
receiving.

what_cpu This is set to the return value from Gestalt (see Inside Mac,
Vol VI) asking what sort of CPU your machine has. If your
effect requires a certain type of CPU, you should check this
value and return an error indicating that the effect cannot
Adobe After Effects Software Development Kit 18

Effects Filters
run. Adobe After Effects only runs on 68020s and higher, so
you don’t need to check this field if you just require 68020.

what_fpu This is set to the return value from Gestalt asking what sort
of FPU your machine has. If you require a floating point unit,
you should return the PF_OutFlag (see below) indicating
such in GLOBAL_SETUP, and then do not execute your
floating point code if this value is set to 0 — just do a
PF_COPY callback of the input to the output when you get
the PF_Cmd_RENDER. See OutFlag description below and
sample FPU-requiring code.

qd_globals This is a pointer to a read only copy of the QuickDraw
globals. In Adobe After Effects 1.x, there was a problem and
the data in these fields was totally incorrect. This was
corrected in After Effects 2.0.

current_time This is the time of the current frame. It will be set in RENDER.
The linear number of the current frame is current_time
divided by time_step. All effects sequences start at time 0 for
the first frame.

time_step This is the time difference between frames. This value and
current_time and total_time are in units given by time_scale.
The time between frames is time_step, not 1. This value will
be 0 at SEQUENCE_SETUP if it is not constant for all frames.
It will be set correctly in the FRAME calls, even if it’s not
constant.

total_time This is the amount of time from the start to the end of the
image sequence on which this effect is being invoked. The
total number of frames is total_time divided by time_step.

local_time_step This is the time step in the local composition. local_time_step
divided by time_scale will give you the rate duration in the
composition in which it is applied.

time_scale These are the units per second that current_time, time_step,
and total_time are in. See QuickTime documentation for an
explanation of how these time values work. As a quick
example, if time_scale is 30, then the units of current_time,
time_step, and total_time are in 30ths of a second. The
time_step might then be 3, indicating that the sequence is
actually being rendered at 10 frames per second. The
total_time might be 105, indicating that the sequence goes
for 3.5 seconds.

field Not implemented.

shutter_angle This is a value describing the motion blur shutter angle
(range is 0 to 1).

width, height These give the dimensions of the layer. They are not the
same as the width and height fields in the input image
parameter, which is param[0].
Adobe After Effects Software Development Kit 19

Effects Filters
extent_hint This is a rectangle that indicates the intersection of the
visible portions of the input and output layers. For an effect
that does not do a geometric distortion of the image,
copying just this rectangle from the source image to the
destination image is sufficient to copy all the image data
that the user will see. This can speed up effects very much. If
your effect doesn’t distort a layer, you can just iterate over
only this rectangle of pixels.

output_origin_x, output_origin_y

These specify the origin of the output buffer in the input
buffer. They are non-zero only when the effect changes the
buffer size.

downsample_x, downsample_y

For speed, the user may have asked for only every Nth
vertical or horizontal pixel to be actually rendered by After
Effects. The width and height of all effect parameters
(including layers) will be automatically adjusted to
compensate, but the effect may need to know the
downsampling factors to correctly interpret scalar
parameters (i.e. sliders) that represent pixel distances in the
image. For example, a blur of 4 pixels should be interpreted
as a blur of 2 pixels if the down sample factor is 1/2 in each
direction. (In After Effects, downsamples are represented as
ratios.) This field is set validly in SEQUENCE_SETUP or
RESETUP, FRAME_SETUP and FRAME_RENDER.

pixel_aspect_ratio This is a structure describing the pixel aspect ratio (pixel
width over pixel height). The NTSC D-1 pixel_aspect_ratio is
.9 and PAL D-1 is 1.1.

in_flags These are various flags indicating some Boolean value to the
effect module. This is a combination of PF_InFlag values OR-
ed together. This field is set for all commands, though most
flags make sense only at certain times. Currently there are no
defined input flags.

global_data, sequence_data, frame_data

These fields are copied from the values you set in the out
data on previous invocations and set here for you to access
the shared data as you need it. The fields will only be set if
they were allocated during previous commands.

PF_ParamsList Array of Parameter Descriptions
You specify the parameters of your effect when you get the
PF_Cmd_PARAMS_SETUP selector by using the PF_ADD_PARAM callback
(described below). Before filling in a PF_ParamDef structure with your
parameters, you should always zero it out first.

The specific structures of each parameter are defined in AE_Effect.h and
examples of each type of parameter are given in the sample code. As an
overview, the types of parameters (with short descriptions) are:

PF_Param_LAYER Layer parameters represent movie or image layers in the
composition. All effects automatically have 1 layer param,
param[0], which is the layer to which they have been
Adobe After Effects Software Development Kit 20

Effects Filters
applied. Some effects may have additional layer parameters
to do compound effects or multi-channel effects. See the
PF_Param_LAYER description in AE_Effect.h for details about
how to use additional layer parameters beyond the default
parameter, and also see the example code.

PF_Param_SLIDER, PF_Param_FIX_SLIDER

Sliders and Fixed point sliders represent single numerical
values. They are the most common type of effect control.
You specify a minimum and maximum value, and the user
can move a slider or type a number to specify the setting they
desire. FIX_SLIDER sliders represent the value as a Fixed (see
Inside Mac, Vol II), thus giving you high precision — you
specify the number of decimal places of precision you want
the user to see. Regular SLIDER sliders represent the value as
a simple long. The difference between a Fixed point slider
with zero decimal places of precision and a regular slider is
that After Effects will still interpolate a Fixed point slider
with full Fixed point precision, even though the user only
sees the integral part. Your effect would have to ignore the
low word of the Fixed point value and use only the integral
high word to get the pure integral results. Nonetheless, non-
Fixed sliders may well disappear in a future version of After
Effects.

PF_Param_ANGLE Angle controls represent an angle in Fixed point degrees
(thus, to small fractions of a degree). The angle value is not
limited to the 0 to 360 degree range. Users can specify
multiple revolution values, if they desire.

PF_Param_CHECKBOX

A checkbox control represents a True or False value. After
Effects will only allow a checkbox to be interpolated with
None or Hold interpolate behavior (because linear
interpolation doesn’t make too much sense).

PF_Param_COLOR A color control represents a 24 bit RGB value that the user
can choose either with the standard color picker or with an
eye dropper tool. In the future, a more sophisticated color
control may be added that allows the user to specify an
Alpha value for the color as well as RGB values.

PF_Param_POINT A point control represents a point in the image. You specify
the default value for the point to After Effects as a value
between 0 and 100 in Fixed point with the radix point at bit
16 (i.e. standard Fixed point). Specifying (50,50) in Fixed
point indicates the point defaults to the center of the image.
The value you are returned for a point control is in absolute
pixels with some number of bits of Fixed point accuracy (you
specify the location of the radix point). Thus, if you gave
(50,50) as the default position and the user applied the effect
to a 640 by 480 layer, the default value you would be sent
would be (320, 240) in Fixed point. See the example code if
you are confused.

PF_Param_POPUP A pop-up represents a list of choices. You specify a list of
pop-up entries in standard Mac menu manager string format
(“Entry1|Entry2|Entry3” etc.), and we create a pop-up menu.
Adobe After Effects Software Development Kit 21

Effects Filters
As with checkboxes, interpolation between pop-up items
frequently does not make sense.

Effect Output

The output parameters of an effect are the processed output image, and a
variety of flags, error values, and/or potentially allocated Handles that will
become input to future invocations. Let’s examine the PF_OutData structure,
then briefly discuss more details about the PF_LayerDef structure that stores
the output (and also the input layer params, which we skimmed over
previously).

PF_OutData Structure
The format of the PF_OutData structure is as follows.

typedef struct {
unsigned long my_version;
char name [PF_MAX_EFFECT_NAME_LEN + 1];
Handle global_data;
short num_params;
Handle sequence_data;
long flat_sdata_size;
Handle frame_data;
short width;
short height;
Point origin;
PF_OutFlags out_flags;
char return_msg [PF_MAX_EFFECT_MSG_LEN + 1];

} PF_OutData;

You only need to set certain output values for any given PF_Cmd selector.
When you can set a field is described along with the usage for that field.
Let’s look at the fields.

my_version Set this flag to the version of your plug-in code. Use the
PF_VERSION macro to construct the proper version value
from major, minor, bug etc., versions. After Effects uses this
data to decide which effect to load in the case of multiple
copies of the same effect.

name This is the name of the effect. PF_STRCPY your value here
(see Callbacks below). This field is checked after
PF_Cmd_GLOBAL_SETUP.

global_data This is a Handle that you can allocate at
PF_Cmd_GLOBAL_SETUP time. It will be passed back to you
verbatim in the input parameter block for use later on. The
same handle is shared by all instances of the effect. If you
have not specified
PF_OutFlag_GLOBALS_ARE_CHANGEABLE in the out_flags,
this will be written out to disk.

num_params The calling application will sanity check the num_params
field vs the times add_param when called (see Callbacks
below). For filters, the implicit input layer parameter MUST
be included in the parameter count.
Adobe After Effects Software Development Kit 22

Effects Filters
sequence_data This is a Handle that you can allocate at
PF_Cmd_SEQUENCE_SETUP time. It will be passed back to
you in the input parameter block for later use. This handle is
shared across all invocations of this instance of the effect,
but not with other sequences. The contents of this handle
may be written out to disk. If other handles hang off this
block, you must specify the
PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING out flag
when you get the PF_Cmd_GLOBAL_SETUP command. You
will then receive the SEQUENCE_FLATTEN command before
your handle is written out. At that time, you should create a
flat version of the handle contents, free the old unflat
handle, and set this field to the flattened version of the
handle. You will receive a PF_Cmd_SEQUENCE_RESETUP call
to unflatten this handle (as well as to adjust the sequence
data to altered input parameter sizes, etc.). If your sequence
data can be flat or unflat, you should store its current state
along with the other data, and check that value in Resetup.
If the handle is flat, Resetup should unflatten it, free the flat
handle, and set this field to the new unflat useable handle.

flat_sdata_size This field should be the number of bytes of the flattened
sequence data handle. Set it in either
PF_Cmd_SEQUENCE_SETUP or
PF_Cmd_SEQUENCE_FLATTEN. (You will not get the
FLATTEN command if you haven’t asked for it, so set this in
SETUP if you are not flattening data).

frame_data This is a Handle that you can allocate at
PF_Cmd_FRAME_SETUP time. It will be passed to you in the
input parameters block as will the global_data and the
sequence_data. This will not be written out to disk. There is
no longer a particular use for this as After Effects does not
interrupt and resume rendering of one frame. Set this field
in PF_Cmd_FRAME_SETUP, if you’d like.

width, height, origin You can set these fields at PF_Cmd_FRAME_SETUP time to
indicate that the output image will be larger than the input
image. You should set width and height to the size that you
want the output buffer to be allocated at. Set origin to the
place that the point (0,0) in the input should map to in the
new larger output. Thus, if you created a 5 pixel drop
shadow up and left, you might set origin to (5, 5).

out_flags The PF_OutFlag values are used to communicate many things
about your effect to the program. You should OR (i.e. use
the | operator) multiple values together and set the out_flags
field. The values are shown described in the next section.

return_msg This is a message string (in C string format) that will be
interpreted as either an error message or a useful display
message (for instance, when handling PF_Cmd_ABOUT). Fill
this string with a message you want After Effects to report to
the user for you. It will come up in a simple dialog with an
OK button. Set the first byte of this string to '\0' to indicate
no string -- it is set that way upon entry to your effect. This
field is examined after every PF_Cmd.
Adobe After Effects Software Development Kit 23

Effects Filters
PF_OutFlags
Here are the values you can use in the out_flags field of the PF_OutData
structure.

PF_OutFlag_NONE This is the “empty” setting. Just here for reference.

PF_OutFlag_KEEP_RESOURCE_OPEN

If set, After Effects will keep the plug-ins resource fork open
the entire time it is running. This should be set if your plug-
in has any of its own resources (not including the required
PiPL).

PF_OutFlag_WIDE_TIME_INPUT

Set this flag if the effect calls get_param (see Callbacks
below) to inquire a parameter at a time besides the current
one (e.g. to get the previous video frame). This must be set,
if it’s going to be set, at PF_Cmd_GLOBAL_SETUP.

PF_OutFlag_NON_PARAM_VARY

Set this if the effect uses information other than the
parameters in the param list to generate its output at the
current time. For instance, if the effect uses the current time
of the frame or some random value to decide the output, set
this flag. This flag should be sent at PF_Cmd_GLOBAL_SETUP.

PF_OutFlag_SEND_PARAMS_UPDATE

!!! This flag is ignored in After Effects 3.0 !!! Set if the effect
wants to update controls values after a parameter has been
changed. For instance, if you want a slider to display
qualitative text descriptions of the numerical values, you
would specify this flag, and then get
PF_Cmd_PARAMS_UPDATE whenever the user altered any of
the parameters. This flag should be sent at
PF_Cmd_GLOBAL_SETUP if it is going to be sent.

PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING

When you allocate a global data handle or a sequence data
handle, the app may write the handle out to disk and reuse
it later. Pass these flags if the handle is not “flat” (i.e. has
pointers or handles hanging off of it). Basically, this gives you
a chance to alter the handle contents before it is written out
to disk, so you won’t get invalid handles or pointers. Once
you have flattened a handle, you will get an opportunity to
un-flatten it before the filter needs to continue. For global
data, you will be invoked with a PF_Cmd_GLOBAL_SETUP,
and the global_data handle in the PF_InData will be non-
NULL. You should un-flatten the global_data, free the flat
handle memory, and set the global_data handle in the
PF_OutData to the unflattened handle. For sequence data,
you will be invoked with a PF_Cmd_SEQUENCE_RESETUP call.
You should store a Boolean at a common offset in your
unflattened and flattened data that says whether the data is
flat or not. If you get a PF_Cmd_SEQUENCE_RESETUP and the
Boolean indicates the data is flattened, you should unflatten
the data, free the flattened data handle, and set the
sequence_data handle in the PF_OutData. If you ever set the
Adobe After Effects Software Development Kit 24

Effects Filters
data to NULL when you flatten it, you may NOT get the
global setup or sequence resetup calls to unflatten it.
Instead, you may just get a FRAME_SETUP call with NULL
data. Forewarned is forearmed. These flags, indicating if the
data will need to be flattened, should be set at
PF_Cmd_GLOBAL_SETUP time (yes, even the sequence data
flag).

PF_OutFlag_I_DO_DIALOG

Set this if the effect responds to a PF_Cmd_DO_DIALOG, i.e.
Does this effect bring up an options dialog box?
PF_Cmd_DO_DIALOG is generated when the user presses the
Options button on an Effect dialog. This flag should be set at
PF_Cmd_GLOBAL_SETUP time.

PF_OutFlag_USE_OUTPUT_EXTENT

The input and output layers are passed with “extent rects”
indicating the area of the layer that actually contains visible
image data. If the effect changes its behavior based on the
extent rect (for instance, by not iterating over the entire
image), set these flags so the application will know whether
having the extent change should cause the frame to re-
render. Specify these flags at PF_Cmd_GLOBAL_SETUP.

PF_OutFlag_SEND_DO_DIALOG

Some filters need their options dialog box to be brought up
at least once to be valid. You can set this flag, and the driver
app will automatically send a PF_Cmd_DO_DIALOG to the
effect when it is applied. The DO_DIALOG will be sent after
PF_Cmd_SEQUENCE_SETUP. This flag should be set in
PF_Cmd_SEQUENCE_SETUP if it is going to be set.

PF_OutFlag_DISPLAY_ERROR_MESSAGE

Whenever the return_msg field in the PF_OutData is set to a
string, After Effects will bring up a simple dialog box
containing that string. If you set this flag, the dialog box will
be made to look like an error message dialog box. If you
don’t set this flag, it will be an undecorated dialog box.
Using this flag, an effects module can have and display its
own error messages and not worry about the code for dialog
boxes — the program will do it for you. Note that this flag
can be used to report system errors — set this flag and return
an error and After Effects will display the appropriate error
message. This way you don’t have to worry about strings for
system error messages. This flag can be sent after any
command.

PF_OutFlag_I_EXPAND_BUFFER

Starting with After Effects 2.0, effects are able to expand
their buffers beyond the current layer's dimensions. This has
always been part of the PF specification, but as an extra
precaution (and hint to the AE rendering engine) set this flag
at PF_Cmd_GLOBAL_SETUP if you plan to expand your
buffer.
Adobe After Effects Software Development Kit 25

Effects Filters
PF_OutFlag_PIX_INDEPENDENT

Set this flag if the output at a given pixel is not dependent
on the values of the pixels around it. If this is set, the pixels
After Effects does not care about (because of field rendering,
for example) could be filled with garbage colors. Please set
this flag at PF_Cmd_GLOBAL_SETUP.

PF_OutFlag_I_WRITE_INPUT_BUFFER

Set this flag if your effect would like to write into the input
buffer. This can be useful if you need an scratch buffer, but
it also invalidates some speedups in the AE rendering
pipeline, so use it with some discretion. Please set this flag at
PF_Cmd_GLOBAL_SETUP.

PF_OutFlag_I_SHRINK_BUFFER

Set this flag if you can shrink your buffer based on the
extent-rects passed to you in order to be more memory
efficient.

PF_OutFlag_WORKS_IN_PLACE

Set this if the plug-in doesn’t require separate input and
output buffers. If they can share a buffer you’ll be able to
save some memory.

PF_OutFlag_SQUARE_PIX_ONLY

Not presently used.

PF_OutFlag_CUSTOM_UI

Indicates the plug-in has a custom user interface and want to
handle events (so it will receive PF_Cmd_EVENT).

PF_OutFlag_CUSTOM_NTRP

Not presently used.

PF_OutFlag_REFRESH_UI

If you set this flag before exiting your plug-in, After Effects
will immediately recall your plug-in with a draw event so you
can refresh the user interface.

PF_OutFlag_NOP_RENDER

Set this flag at frame setup time if the current rendering
won’t effect the image. This allows After Effects to skip some
steps (and hence save same time) in its rendering pipeline.

PF_OutFlag_I_USE_SHUTTER_ANGLE

Indicates rendered images depend upon the value of the
shutter_angle field.

PF_OutFlag_I_USE_AUDIO

Indicates rendered images depend on sound values (see the
three audio callbacks in the next section).
Adobe After Effects Software Development Kit 26

Effects Filters
PF_OutFlag_I_AM_OBSOLETE

Set this bit if you want a the plug-in to be available for use,
but not to appear in the Effect menu.

PF_LayerDef Structure
Finally, let’s look at the structure of the output layer definition. The layer
definition structure looks like this.

typedef struct PF_LayerDef {
PF_ParamValue reserved0;
PF_ParamValue reserved1;
PF_WorldFlags world_flags;
PF_Pixel *data;
long rowbytes;
long width;
long height;
Rect extent_hint;
long platform_ref;
long reserved[8];
short dephault;

} PF_LayerDef;

PF_LayerDef structures are frequently called PF_Worlds. The relevant fields
are:

world_flags These flags specify information about the image. Currently,
the only supported flag is PF_WorldFlag_WRITEABLE which
indicates that you are allowed to alter the image data of the
world. This is relevant, because you are usually not allowed
to alter the image data of input worlds, but are allowed to
alter the data of output. If you check this flag on the input
layer, you can sometimes avoid having to allocate scratch
image space.

data This is a pointer to the actual image data. Image data in
After Effects is always organized in 32-bit chunky format —
that is, sequential long words each contain Alpha, Red,
Green, Blue from the high byte to the low byte.

rowbytes The block of pixels contains ‘height’ lines each with ‘width’
pixels followed by some bytes of padding. The ‘width’ pixels
(times four, because each pixel is four bytes long) plus the
extra padding adds up to rowbytes bytes. Use this value to
move a pointer from scanline to scanline as you traverse the
image data.

width, height These represent the width and height of the image.

extent_hint For source layers, extent_hint is the smallest rect
encompassing all opaque (non-zero alpha) areas of the layer.
For output, this encompasses the area that needs to be
rendered (i.e. not covered by other layers, needs refreshing,
etc.). If your plug-in varies visually based on extent (like a
diffusion dither, for example) you should ignore this param
and render the full frame each time — effect results should
NOT vary based on this field, it only exists to potentially save
time.
Adobe After Effects Software Development Kit 27

Effects Filters
platform_ref This field is still unused. To access platform-specific
information about a PF_World, use the
PF_GET_PLATFORM_REFS macro.

The PF_GET_PLATFORM_REFS macro provides a CGrafPtr and
a GDeviceHandle from a PF_World.

Callbacks

Adobe After Effects provides several sets of callbacks: a set for user
interaction, a set for ANSI c style string manipulation, a set for math
intrinsics, a set of graphics utilities, and a set for color space conversions.
There are also some custom user interface callbacks which are described in
the next chapter.

Use of callbacks can allow a plug-in to be kept compact. The callbacks
themselves are efficient and have been well tested by Adobe. In addition,
using the callbacks will automatically allow a plug-in to take advantage of
multi-processing hardware (if available) which After Effects 3.1 now
supports.

User Interaction Related Callbacks
Every effect will call some of the interaction callbacks. Function pointers to
these callbacks are provided in the PF_InData structure, and macros are
defined in AE_Effect.h to give easy access to the routines. The macros to
access these functions (along with fake prototypes for the macros and
explanations) are listed next.

PF_ADD_PARAM PF_Err PF_ADD_PARAM (
PF_InData *in_data,
PF_ParamIndex index,
PF_ParamDefPtr def);

When given the PARAMS_SETUP message, the effect will
generally make a series of calls to the add_param routine to
define the interface that the After Effects user will see. See
the PF_Param types described above, the AE_Effect.h header
and the sample code for examples of the use of this callback.

PF_ABORT PF_Err PF_ABORT (PF_InData *in_data);

Periodically, you should check if the user wants to interrupt
the current processing. The abort proc here will return non-
zero if the effects module should suspend its current
processing. If you call this routine and it returns a value other
than zero, you should return that value when your effect
returns. That will let the application know whether the
effect completed rendering the output image or not.

PF_PROGRESS PF_Err PF_PROGRESS (
PF_InData *in_data,
long current,
long total);

You may wish to display a progress bar while you are
processing the image. This routine combines the abort proc
user interrupt checking with code that will display a progress
bar for you. The current and total params represent a
fraction (current divided by total) that describes how far you
Adobe After Effects Software Development Kit 28

Effects Filters
are along in your processing. Current should equal total
when done. Additionally, this routine will return non-zero if
you should suspend/abort your current processing. You
should probably try not to call this too frequently (e.g. at
every pixel). It is better to call it, say, once per scanline, unless
your effect is really, really slow. If total is set to 0, then After
Effects will automatically call PF_ABORT.

PF_CHECKOUT_PARAM

PF_Err PF_CHECKOUT_PARAM (
PF_InData *in_data,
PF_ParamIndex index,
long what_time,
long step
long time_scale,
PF_ParamDef *param);

The checkout_param callback allows you to inquire
parameter values at times other than the current one, and
allows you to access layer params other than the default
input and output layer. See the notes on the “params”
structure at the end of AE_Effect.h for details. Another
words, it queries the After Effects database so you can look
at your param values.

The PF_ParamDef you specify cannot point into the
“params” array and the memory must exist elsewhere, such
as on the stack. If you checkout a layer parameter and the
layer pop-up is currently set to <none>, the returned
PF_ParamDef will be filled with zeros. You can check the
“data” pointer. If it is NULL, then the layer param is set to
<none> and you should do something like faking an all
alpha zero layer or some such nonsense. Note that you can
inquire layers at other times. Note that params checked out
are strictly read only, writing to them could cause
unpredictable rendering errors.

PF_CHECKIN_PARAM PF_Err PF_CHECKIN_PARAM (
PF_InData *in_data,
PF_ParamDef *param);

When you have called checkout_param, you must call
checkin_param when you are done so After Effects can clean
up after itself and you. This is very important for smooth
functioning and also to save memory where possible. Once
checked in, the fields in the PF_ParamDef will no longer be
valid.

PF_REGISTER_UI PF_Err PF_REGISTER_UI (
PF_InData *in_data,
PF_CustomUIInfo *cust_info);

Register a custom user interface element. See the Custom
User Interface chapter5 for information.
Adobe After Effects Software Development Kit 29

Effects Filters
PF_CHECKOUT_LAYER_AUDIO

PF_Err PF_CHECKOUT_LAYER_AUDIO (
PF_InData *in_data,
PF_ParamIndex index,
long start_time,
long duration,
long time_scale,
PF_UFixed rate,
long bytes_per_sample,
long num_channels,
long fmt_signed,
PF_LayerAudio *audio);

Given an index, start_time, duration, time_scale, rate,
bytes_per_sample, num_channels, and fmt_signed, After
Effects will return a PF_LayerAudio structure. This is an
abstract chunk of data which can be feed into
PF_GET_AUDIO_DATA to extract some meaningful
information. As with PF_CHECKOUT_PARAM, this data
should be considered strictly read only.

PF_CHECKIN_LAYER_AUDIO

PF_Err PF_CHECKIN_LAYER_AUDIO (
PF_InData *in_data,
PF_LayerAudio audio);

After calling PF_CHECKOUT_LAYER_AUDIO, you must call
this to check the layer audio back in after examining it.

PF_GET_AUDIO_DATA

PF_Err PF_GET_AUDIO_DATA (
PF_InData *in_data,
PF_LayerAudio audio,
PF_SndSamplePtr *data0,
long *num_samples0,
PF_UFixed *rate0,
long *bytes_per_sample0,
long *num_channels0,
long *fmt_signed0);

All the parameters after audio are optional. Given a
PF_LayerAudio structure, this returns all the indicated
information.

Kernel Flags
Many functions work with "kernels" or matrices of values. These matrices
can be of different types, of different arrangements, and can be generated
or treated in different ways. The KernelFlags are used in a variety of
functions to determine how the matrices should be created and used. You
should OR together any flags you need. Which flags are relevant for a given
routine are documented along with the prototype for the routines below.

For each row below you can choose one of the entries. The first entry is
always the default and has value 0.
Adobe After Effects Software Development Kit 30

Effects Filters
Graphics Utility Callbacks
The graphics utility callbacks are extensively documented in the
AE_EffectCB.h file. An overview of the callbacks available and their
capabilities will be given here, but you should look at the header file and
the example code for details on actually using the utilities.

Plug-ins do not have to use the graphics utility callbacks, but there are
advantages in doing so. First, it will frequently be easier to use these
callbacks rather than re-implementing the wheel (so to speak). The callbacks
will, in general, be relatively fast and will work correctly. Second, on
machines that have a DSP (Digital Signal Processor) or other hardware
accelerator installed, some of these callbacks may be accelerated
automatically, transparent to the plug-in. In addition, machines equipped
with multiple processors will be able to divide the processing amongst the
processors. Third, it will make it easier to port your plug-in code to another
platform.

Accessing the utility callbacks can be a little complex, because the pointer to
the structure of function pointers in the PF_InData is defined as a void * in

Kernel Flags Description

PF_KernelFlag_2D
PF_KernelFlag_1D

Use 1D for a one dimensional kernel or 2D
for a two dimensional kernel.

PF_KernelFlag_UNNORMALIZED
PF_KernelFlag_NORMALIZED

Use the NORMALIZED flag to equalize the
kernel, forcing the volume under the kernel
surface to be the same as the volume under
the covered area of pixels. Otherwise, it
will be unnormalized.

PF_KernelFlag_CLAMP
PF_KernelFlag_NO_CLAMP

Use the CLAMP flag to force values to be
clamped into their valid range (that is
determined by the type of item (char, fixed,
long).

PF_KernelFlag_USE_LONG
PF_KernelFlag_USE_CHAR
PF_KernelFlag_USE_FIXED
PF_KernelFlag_USE_UNDEFINED

Use USE_LONG to treat the kernel as an
array of longs valued from 0 to 255, use
USE_CHAR to treat the kernel as an array of
unsigned chars from 0 to 255, and use
USE_FIXED to treat the kernel as an array of
fixeds from 0 to 1.

Note: At present USE_LONG is the only one
of these flags which is implemented!

PF_KernelFlag_HORIZONTAL
PF_KernelFlag_VERTICAL

Use the HORIZONTAL flag to apply a 1D
convolution horizontally, or VERTICAL to
apply it vertically

PF_KernelFlag_TRANSPARENT_BORDERS
PF_KernelFlag_REPLICATE_BORDERS

Use REPLICATE_BORDERS to replicate border
pixels when sampling off the edge, use
TRANSPARENT_BORDERS to treat pixels off
the edge as alpha zero (black).

Note: At present the REPLICATE_BORDERS
flag is not implemented and will be
ignored!

PF_KernelFlag_STRAIGHT_CONVOLVE
PF_KernelFlag_ALPHA_WEIGHT_CONVOLVE

Use STRAIGHT_CONVOLVE to indicate
straight convolution, use
ALPHA_WEIGHT_CONVOLVE to tell the con-
volution code to alpha-weight the contribu-
tions of pixels to the resulting convolved
output.

Note: At present the
ALPHA_WEIGHT_CONVOLVE flag is not
implemented and will be ignored.
Adobe After Effects Software Development Kit 31

Effects Filters
AE_Effect.h. Macros are defined in AE_EffectCB.h to make it easier to use
these utility functions — the prototypes given for the functions here are the
prototypes for the macros (which are not exactly the same as the real
prototypes). See the Macros section of AE_EffectCB.h for further
explanation.

PF_SUBPIXEL_SAMPLE

PF_Err PF_SUBPIXEL_SAMPLE (
PF_Fixed x,
PF_Fixed y,
const PF_SampPB *params,
PF_Pixel *dst_pixel);

Use this to inquire the appropriate alpha weighted
interpolation of colors at a non-integral point in a source
image, in high quality. Nearest neighbor sampling is used in
low quality.

Because the sampling routine, if used, will typically be called
many times, it is convenient to copy the function pointer out
of the callbacks structure and into a register or onto the
stack to speed up your inner loop. See the sample code for
an example.

PF_AREA_SAMPLE PF_Err PF_AREA_SAMPLE (
PF_Fixed x,
PF_Fixed y,
const PF_SampPB *params,
PF_Pixel *dst_pixel);

Use this to calculate the appropriate alpha weighted
average of an axis-aligned non-integral rectangle of color in
a source image, in high quality. Nearest neighbor in low
quality. This routine will be vectored to the proper alpha-
version. Because of overflow issues, this can only average a
maximum of a 256 pixel by 256 pixel area (i.e. x and y range
< 128 pixels). In After Effects 3.x this callback uses a box filter
for pixel averaging.

PF_BLEND PF_Err PF_BLEND (
const PF_World *src1,
const PF_World *src2,
PF_Fixed ratio,
PF_World *dst);

This blends two images with one another. This does an
alpha-weighted mixture of the colors. This is provided
because ALL effects should have a state in which there is no
visual change to the source image. This can often be realized
by providing a “blend-with-source” slider. It is possible that
this will have different high and low qual versions.
Adobe After Effects Software Development Kit 32

Effects Filters
PF_CONVOLVE PF_Err PF_CONVOLVE (
PF_World *src,
const Rect *area,
PF_KernelFlags flags,
short kernel_size,
void *a_kernel,
void *r_kernel,
void *g_kernel,
void *b_kernel,
PF_World *dst);

Convolve an image with an arbitrary size kernel on each of
the a, r, g, and b channels separately. You can specify a
rectangle to convolve (for instance, the extent_hint), or pass
NULL to convolve the entire image. Using the kernel flags
you can specify a full two-dimensional convolution or a one-
dimensional horizontal or vertical convolution, as well as
kernel normalization, range clamping, edge behavior, and
alpha-weighting. This callback may have different high and
low quality versions.

This looks for the following kernel flags (see the defines in
AE_EffectCB.h):

Use 1D or 2D
Use Clamp or No Clamp
Use long, char, and fixed
Use straight or alpha-weighted convolve
Plus if 1D is specified, use horizontal or vertical

PF_COPY PF_Err PF_COPY (
PF_World *src,
PF_World *dst,
Rect *src_r,
Rect *dst_r);

This blits a region from one PF_World to another. This is an
alpha-preserving (unlike CopyBits), 32-bit only, antialiased
stretch blit. This routine will be vectored based on the
current alpha channel preference.

PF_FILL PF_Err PF_FILL (
const PF_Pixel *color,
const Rect *dst_rect,
PF_World *world);

This fills a rectangle in the image with the given color.
Setting the color pointer to NULL will fill the rectangle with
black (and alpha zero). Setting the rectangle to NULL fills the
entire image. If you use this routine to fill with a transparent
color, be sure to check your current alpha mode to avoid
filling a rectangle with illegal color values. (With
premultiplied alpha, r, g, b must not be greater than a.)

PF_GAUSSIAN_KERNEL

PF_Err PF_GAUSSIAN_KERNEL (
double kRadius,
PF_KernelFlags flags,
double multiplier,
short *diameter,
void *kernel);

Generate a kernel with a Gaussian distribution of values.
Using the kernel flags you can specify a one or two
Adobe After Effects Software Development Kit 33

Effects Filters
dimensional array of values and a normalized or
unnormalized distribution. This callback will be the same for
high and low quality.

This looks for the following kernel flags (see the defines in
AE_EffectCB.h):

Use 1D or 2D
Use Normalized or Unnormalized
Use longs, chars, and fixed

The multiplier parameter value is multiplied by every value
generated. In general you should pass 1.0, but this lets you
adjust the "fuzziness" of the kernel.

The diameter parameter is the actual integral width of
generated kernel. This will always currently be
(int)ceil(kRadius) * 2 + 1. You need to know this because the
"kernel" array must be already allocated

Upon entry to this routine the kernel parameter is a
diameter by diameter array of values allocated by you, of
longs, chars, or fixeds. It points to the kernel upper left
corner.

PF_ITERATE PF_Err PF_ITERATE (
long progress_base,
long progress_final,
PF_World *src,
const Rect *area,
long refcon,
PF_Err (*pix_fn)(

long refcon,
long x,
long y,
PF_Pixel *in,
PF_Pixel *out),

PF_World *dst);

This invokes a function you specify on a region of pixels in
the source and dest images. You give a refcon, and the
function is invoked with that refcon, plus the x and y
coordinates of the current pixel, plus pointer to that pixel in
the source and destination images. You can specify a
rectangle to iterate over (for instance, the extent_hint), or
pass NULL for the rect param to iterate over every pixel
where the worlds overlap. If you pass the src world as NULL,
this will just iterate over the dst. This function is quality
independent.

You should not depend upon the pixels being traversed in
any particular order and you should consider all the
parameters (except dst) to be read-only while After Effects is
processing. The reason for this is so the image can be split up
by After Effects for processing on multiple processor
machines.

This callback automatically includes progress and abort
checking, so you don’t need to include that in your pixel
function.
Adobe After Effects Software Development Kit 34

Effects Filters
PF_ITERATE_ORIGIN PF_Err PF_ITERATE_ORIGIN (
long progress_base,
long progress_final,
PF_World *src,
const Rect *area,
const Point *origin,
long refcon,
PF_Err (*pix_fn)(

long refcon,
long x,
long y,
PF_Pixel *in,
PF_Pixel *out),

PF_World *dst);

This routine is similar to PF_ITERATE except that it lets you
specify an offset from the input into the output. For
example, if your output buffer is smaller than your input
buffer, pass (in_data->output_origin_x, in_data-
>output_origin_y) as the origin parameter, and NULL as
area, and PF_ITERATE_ORIGIN will offset the src pixel pointer
appropriately to your pix_fn.

PF_ITERATE_LUT PF_Err PF_ITERATE_LUT (
PF_InData *in_data,
long progress_base,
long progress_final,
PF_World *src,
const Rect *area,
unsigned char *a_lut0,
unsigned char *r_lut0,
unsigned char *g_lut0,
unsigned char *b_lut0,
PF_World *dst);

Iterate Look Up Table. This is the same as PF_ITERATE except
it uses a look up table instead of a function pointer. The look
up table values for alpha, red, green, blue are specified using
the *_lut0 parameters. If any of these are 0, then the identity
look up table will be used.

PF_TRANSFER_RECT PF_Err PF_TRANSFER_RECT (
PF_InData *in_data,
PF_Quality quality,
PF_ModeFlags m_flags,
PF_Field field,
const Rect *src_rec,
const PF_World *src_world,
const PF_CompositeMode *comp_mode,
const PF_MaskWorld *mask_world0,
long dest_x,
long dest_y,
PF_World *dst_world);

This performs a rect to rect blend using any of the supported
After Effects transfer modes, with an optional mask.
Adobe After Effects Software Development Kit 35

Effects Filters
PF_TRANSFORM_WORLD

PF_Err PF_TRANSFORM_WORLD (
PF_InData *in_data,
PF_Quality quality,
PF_ModeFlags m_flags,
PF_Field field,
const PF_World *src_world,
const PF_CompositeMode *comp_mode,
const PF_MaskWorld *mask_world0,
const PF_FloatMatrix *matrices,
long num_matrices,
Boolean src2dst_matrix,
const Rect *dest_rect,
PF_World *dst_world);

This callback signifies the heart of the After Effects rendering
engine. Given a PF_World (*src_world) and a matrix, or an
array of matrices, this transforms and blends using any of the
supported After Effects transfer modes with an optional
mask. The matricies pointer points to a matrix array used for
motion-blur.

PF_PREMUL PF_Err PF_PREMUL (
Boolean forward,
PF_World *dst);

Converts to and from having r, g, and b color values
premultiplied with black to represent the alpha channel.
High qual same as low qual.

PF_PREMUL_COLOR PF_Err PF_PREMUL_COLOR (
PF_World *src,
PF_Pixel *color,
Boolean forward,
PF_World *dst);

To convert to and from having r, g, and b color values
premultiplied with any color to represent the alpha channel.
High qual same as low qual.

PF_NEW_WORLD PF_Err PF_NEW_WORLD (
short width,
short height,
Boolean blank,
PF_World *world);

This creates a new PF_World from scratch for you. You must
dispose of it. This is quality independent.

PF_DISPOSE_WORLD PF_Err PF_DISPOSE_WORLD (PF_World *world);

This disposes a PF_World, deallocating pixels, etc. Only call it
on worlds you have created. Quality independent.
Adobe After Effects Software Development Kit 36

Effects Filters
GET_PLATFORM_REFS PF_Err GET_PLATFORM_REFS (
PF_InData *in_data,
PF_World *world,
void **plat_1,
void **plat_2);

This routine will return two platform-specific long words for
a given PF_World. In the case of the Macintosh, the first will
be a CGrafPtr and the second will be a GDeviceHandle.

get_callback_addr PF_Err (*get_callback_addr) (
PF_ProgPtr effect_ref,
PF_Quality quality,
PF_ModeFlags mode_flags,
PF_CallbackID which_callback,
PF_CallbackFunc *fn_ptr);

Chances are good that you will never use this callback. No
macro is provided for easy access. This is the callback to get
addresses of callback functions at different qualities or alpha
modes. See the large comment in the Callback Selectors
section of AE_EffectCB.h. You would use this to circumvent
the nearest neighbor behavior of the sampling functions at
low quality, if you really needed to.

Intrinsic Callbacks
Along with the variety of graphics utilities, we also provide a block of ANSI
standard routines so that plug-ins will not need to include the ANSI library
to use standard functions. We give function pointers to a large number of
math functions (trig functions, sqrt, logs, etc.). Macros are defined in
AE_EffectCB.h to access these functions. In general, the macro looks just like
the ANSI function only with a PF_ prefix and in all caps; for example, to call
sin(x) you would write PF_SIN(x).

Here are the ANSI routines that can be called through After Effects. These all
return a double. All angles are expressed in radians, use
PF_RAD_PER_DEGREE to convert from degrees to radians if necessary.

PF_ACOS r PF_ACOS (double x);

This returns the arc cosine of x.

PF_ASIN r PF_ASIN (double x);

This returns the arc sine of x.

PF_ATAN r PF_ATAN (double x);

This returns the arc tangent of x.

PF_ATAN2 r PF_ATAN2 (double x, double y)

This returns atan(y/x)

PF_CEIL r PF_CEIL (double x);

This returns the next integer above x.

PF_COS r PF_COS (double x);

This returns the cosine of x.
Adobe After Effects Software Development Kit 37

Effects Filters
PF_EXP r PF_EXP (double x);

This returns e to the power of x.

PF_FABS r PF_FABS (double x);

This returns the absolute value of x.

PF_FLOOR r PF_FLOOR (double x);

This returns the closest integer below x.

PF_FMOD r PF_MOD (double x, double y);

This returns x modulus y.

PF_HYPOT r PF_HYPOT (double x, double y);

This returns the hypotenuse of x and y which is
sqrt(x*x + y*y).

PF_LOG r PF_LOG (double x);

This returns the natural log (ln) of x.

PF_LOG10 r PF_LOG10 (double x);

This returns the log (base 10) of x.

PF_POW r PF_POW (double x, double y);

This returns x to the power of y.

PF_SIN r PF_SIN (double x);

This returns the sine of x;

PF_SQRT r PF_SQRT (double x);

This returns the square root of x.

PF_TAN r PF_TAN (double x);

This returns the tangent of x.

ANSI Callbacks
Here are a couple more useful ANSI c style callbacks.

PF_SPRINTF PF_Err PF_SPRINTF (
char *s1,
const char *s2,
...);

This emulates the c sprintf routine.

PF_STRCPY PF_Err PF_STRCPY (
char *s1,
const char *s2,
...);

This emulates the c strcpy routine.
Adobe After Effects Software Development Kit 38

Effects Filters
Colorspace Conversion Callbacks
The following callbacks provide functions for converting between various
colorspaces. The callbacks reference the following small structures:

This describes an RGB (Alpha, Red, Green, Blue) pixel:

typedef struct {
unsigned char alpha, red, green, blue;

} PF_Pixel;

This describes an HLS (Hue, Lightness, Saturation) pixel:

typedef fixed PF_HLS_PIXEL[3]

This describes a YIQ (luminance, inphase chrominance, quadrature chrominance)
pixel:

typedef fixed PF_YIO_PIXEL[3]

RGB_TO_HLS PF_Err PF_RGB_TO_HLS (
PF_Pixel *rgb,
PF_HLS_Pixel hls);

Given an RGB pixel, this returns an HLS (hue, lightness,
saturation) pixel. HLS values are scaled from 0 to 1 in fixed
point.

PF_HLS_TO_RGB PF_Err PF_HLS_TO_RGB (
PF_HLS_Pixel hls,
PF_Pixel *rgb);

Given an HLS pixel, this returns an RGB pixel.

PF_RGB_TO_YIQ PF_Err PF_RGB_TO_YIQ (
PF_Pixel *rgb,
PF_YIQ_Pixel yiq);

Given an RGB pixel, this returns a YIQ (luminance, inphase
chrominance, quadrature chrominance) pixel. Y is 0 to 1 in
fixed point, I is -0.5959 to 0.5959 in fixed point, and Q is
-0.5227 to 0.5227 in fixed point.

PF_YIQ_TO_RGB PF_Err PF_YIQ_TO_RGB (
PF_HLS_Pixel yiq,
PF_Pixel *rgb);

Given a YIQ pixel, this returns an RGB pixel.

PF_LUMINANCE PF_Err PF_LUMINANCE (
PF_Pixel *rgb,
long *lum100);

Given an RGB pixel, this returns 100 times its luminance value
(0 to 25500).

PF_HUE PF_Err PF_HUE (
PF_Pixel *rgb,
long *hue);

Given an RGB pixel, this returns its hue angle mapped from
0 to 255, where 0 is 0 degrees and 255 is 360 degrees.
Adobe After Effects Software Development Kit 39

Effects Filters
PF_LIGHTNESS PF_Err PF_LIGHTNESS (
PF_Pixel *rgb,
long *lightness);

Given an RGB pixel, this returns its lightness value (0 to 255).

PF_SATURATION PF_Err PF_SATURATION (
PF_Pixel *rgb,
long *saturation);

Given an RGB pixel, this returns its saturation value (0 to
255).
Adobe After Effects Software Development Kit 40

5Custom User Interface
5 Custom User Interface

To provide a custom user interface for plug-ins, After Effects 2.0 and 3.x
support a modal dialog via an “options” button mechanism. After Effects 3.x
also adds a new facility to the plug-in API for adding non-modal custom user
interface elements in the effects, composition, and layer windows.

There are 2 example plug-ins, one which uses a custom UI in the composition
window and one which uses a custom UI in the effects window, to
demonstrate the new custom UI API. While reading the descriptions below,
also refer to the header file, AE_EffectUI.h.

In reading the descriptions below, note the term “context” signifies the
environment in which you will get events. Generally this corresponds with a
window.

Getting UI Events

You can inform After Effects that you wish to utilize a custom user interface
by setting the PF_OutFlag_CUSTOM_UI flag in the out_flags field of the
PF_OutData structure (see PF_OutData in the Effects Filters chapter) when
responding to a PF_Cmd_GLOBAL_SETUP.

After getting a PF_Cmd_PARAMS_SETUP you can indicate what UI events you
wish to receive by filling in the PF_CustomUIInfo structure and calling
PF_REGISTER_UI.

Upon receiving the PF_Cmd_EVENT command selector mentioned in chapter
2, the *extra parameter will point to the following PF_EventExtra structure
which describes the UI event.

typedef struct {
PF_ContextH contextH;
PF_EventType e_type;
PF_EventUnion u;
PF_EffectWindowInfo effect_win;
PF_EventCallbacks cbs;
PF_EventInFlags evt_in_flags;
PF_EventOutFlags evt_out_flags;

} PF_EventExtra;

contextH Context Handle. This is a handle to the context which can be
drawn in. The PF_Context structure is listed below. There are
4 long words in the structure which the plug-in can use for
any specific data it wishes to retain. These can be pointers,
handles, or simply long words.

e_type Event Type. This is the event type which identifies the kind of
UI event to respond to. The event types are listed below.
Adobe After Effects Software Development Kit 41

Custom User Interface
u Event Union. This is a structure containing information
specific to the event that has taken place. See PF_EventUnion
below for the structure definition.

effect_win Effect Window Info. This contains additional info about the
event if it’s taking place in the effects window. See
PF_EffectWindowInfo structure below for additional
information.

cbs Event Callbacks. This is a callback structure which provides
the addresses of callbacks you can use in your UI code. Most
of the callbacks provide coordinate mapping routines. They
are listed below.

evt_in_flags Event In Flags. This currently contains only one value, named
PF_EI_DONT_DRAW, which you should examine before
drawing into a comp or layer window. If this flag is set you
should avoid drawing.

evt_out_flags Event Out Flags. This currently only contains one value,
named PF_EO_HANDLED_EVENT, which you can set. Setting
it indicates to After Effects that you’ve handled an event
which shouldn’t be further propagated.

PF_Context Structure
The PF_Context structure is returned in the PF_EventExtra structure and is
used to identify the context (or window) where the UI event is happening.
The structure looks like this:

typedef struct {
unsigned long magic;
PF_WindowType w_type;
void *cgrafptr;
long reserved_flt;
long plugin_state[4];

} PF_Context;

magic This is used internally for integrity checking and should not
be altered.

w_type This is a PF_WindowType which identifies the type of context
window. The possible values are:

cgrafptr This is the Macintosh cgrafptr for the current context.

reserved_flt Reserved, please do not disturb.

plugin_state An array of 4 longs which the plug-in can use to store state
information specific to a given context.

Window Type Name Value

Composition PF_Window_COMP 0

Layer PF_Window_LAYER 1

Effect PF_Window_EFFECT 2

Preview PF_Window_PREVIEW 3
Adobe After Effects Software Development Kit 42

Custom User Interface
Event Types (PF_EventType)

The event type identifies the kind of UI event that has just taken place.
Depending on the kind of event, the PF_EventUnion parameter will indicate
more information about the event. The event types are:

PF_Event_NEW_CONTEXT

The user creates a new context, probably by opening a
window for events. The plug-in is allowed to store state
information inside the context using the context handle.
PF_EventUnion will be empty.

PF_Event_ACTIVATE The user has activated a new context, probably by bringing
a window into the foreground. PF_EventUnion will be
empty.

PF_Event_DO_CLICK This is a Click Event, the PF_EventUnion parameter will
contain a PF_DoClickEventInfo structure (listed below). The
plug-in must handle a mouse click inside of a context, but
may block until a mouseup, if desired.

PF_Event_DRAG This is also a Click Event, the PF_EventUnion parameter will
contain a PF_DoClickEventInfo structure (listed below). The
plug-in can request this event by returning from a do_click
with a send_drag. This can be used in the middle of a drag
operation so After Effects can see the data the user has
changed and can update the standard user interface
elements. This is demonstrated by the custom UI in fx
window plug-in sample.

PF_Event_DRAW This is a Draw Event, the PF_EventUnion parameter will
contain a PF_DrawEventInfo structure (listed below).

PF_Event_DEACTIVATE

The user has deactivated a context, perhaps by bringing
another window into the foreground. PF_EventUnion will be
empty.

PF_Event_CLOSE_CONTEXT

A context is closed by the user. PF_EventUnion will be empty.

PF_Event_IDLE A context is open but nothing much is happening right now.
PF_EventUnion will be empty.

PF_Event_KEYDOWN

This is a keyboard event, the PF_EventUnion parameter will
contain a PF_KeyDownEvent structure (listed below).
Adobe After Effects Software Development Kit 43

Custom User Interface
Event Unions (PF_EventUnion)

The event type (listed above) identifies the kind of event. There are basically
3 kinds: Click Event, Draw Event, and Key Down Event. The u parameter will
contain one of the following structures, depending upon the kind of event.

Click Event
A Click Event return the following structure. You’ll get this when there is
any kind of mouse click or drag.

typedef struct {
unsigned long when;
Point screen_point;
long num_clicks;
long modifiers;
long continue_refcon[4];
Boolean send_drag;
Boolean last_time;

} PF_DoClickEventInfo;

when Indicates the time at which the click occurred. It is the value
of TickCount().

screen_point Screen coordinate where the click occurred.

num_clicks The number of mouse clicks that occurred.

modifiers What, if any, modifier keys were held down when the click
happened.

continue_refcon An array of 4 longs that the plug-in can use to store
information during a click-drag-drag sequence.

send_drag When you get a click event, if you want to then drag the
mouse, set this flag. The next click event will then effectively
be a drag event.

last_time This will be set when the drag event ends, another words the
user has released the mouse button.

Draw Event
A Draw Event returns the following structure. You’ll get this when there’s
any kind of draw event.

typedef struct {
Rect update_rect;
long depth;
void *gdeviceH;

} PF_DrawEventInfo;

update_rect This is the rect, in the context windows coordinate system,
which is being draw in. Callbacks are provided, see below,
for converting between the various coordinate systems used
by the various After Effects windows.

depth This is the pixel depth of the device to draw into.
Adobe After Effects Software Development Kit 44

Custom User Interface
*gdeviceH Pointer to the Macintosh gdevice handle.

Key Down Event
A Key Down Event returns the following structure. You’ll get this whenever
the user presses a key.

typedef struct {
unsigned long when;
Point screen_point;
long char_code;
long key_code;
long modifiers;

} PF_KeyDownEvent;

when Indicates the time at which the click occurred. It is the value
of TickCount().

screen_point Screen coordinate of the mouse pointer when the key was
pressed.

char_code Character code corresponding to the key pressed.

key_code Key code of the key pressed.

modifiers What, if any, modifier keys were held down during the
mouse click.

Effect Window Information (PF_EffectWindowInfo)

If an event takes place in an effects window, the following structure will be
sent in the PF_EffectWindowInfo field.

typedef struct {
PF_ParamIndex index;
PF_EffectArea area;
Rect current_frame;
Rect param_title_frame;
long horiz_offset;

} PF_EffectWindowInfo;

index This indicates which control in the effect window is being
affected. The controls are numbered from 0 to the number
of controls minus 1.

area This indicates if the control title or the control itself are
begin affected.

current_frame A rect indicating the full frame of the area occupied by the
control.

Area Name Value

Title PF_EA_PARAM_TITLE 1

Control PF_EA_CONTROL 2
Adobe After Effects Software Development Kit 45

Custom User Interface
param_title_frame A rect indicating the title area of the control.

horiz_offset A horizontal offset from the left side of the title area in
which to draw into the title.

UI Callbacks (PF_EventCallbacks)

After Effects provides the following UI event callbacks. These are mostly
used for transposing coordinate systems. Similar to the effects callbacks,
function pointers to these callbacks are provided in the PF_EventCallbacks
structure and macros are defined in AE_EffectUI.h to give easy access to the
routines. The macros to access these functions (along with fake prototypes
for the macros) and explanations are listed next.

Please note these macros default a few parameters for simplicity, in
particular the refcon and context handle. Like the effects callbacks, the
refcon assumes you have a local named "extra". The default context is the
current context. You can see where these default parameters are defined by
looking at the PF_EventCallbacks structure in AE_EffectUI.h. You can
override the defaults by either accessing the callbacks through the
PF_EventExtra structure or by modifying the macros which are located at the
bottom of the header file.

LAYER_TO_COMP PF_Err LAYER_TO_COMP (
long curr_time,
long time_scale,
PF_FixedPoint *pt);

This transforms layer window coordinates to the
composition window coordinates.

COMP_TO_LAYER PF_Err COMP_TO_LAYER (
long curr_time,
long time_scale,
PF_FixedPoint *pt);

This transforms composition window coordinates to the
layer window coordinates.

GET_COMP2LAYER_XFORM

PF_Err GET_COMP2LAYER_XFORM (
long curr_time,
long time_scale,
long *exists,
PF_FloatMatrix *comp2layer);

This returns the transformation matrix used to convert from
the composition window to the layer window.

GET_LAYER2COMP_XFORM

PF_Err GET_LAYER2COMP_XFORM (
long curr_time,
long time_scale,
PF_FloatMatrix *layer2comp);

This returns the transformation matrix used to convert from
the layer window to the composition window.
Adobe After Effects Software Development Kit 46

Custom User Interface
SOURCE_TO_FRAME PF_Err SOURCE_TO_FRAME (PF_FixedPoint *pt);

This transforms the source coordinates identified by *pt of
the current context to screen coordinates.

FRAME_TO_SOURCE PF_Err FRAME_TO_SOURCE (PF_FixedPoint *pt);

This transforms the screen coordinates identified by *pt to
the source coordinates of the current context.

INFO_DRAW_COLOR PF_Err INFO_DRAW_COLOR (PF_Pixel color);

This performs the standard color information reporting into
the info window which happens as the user moves the
mouse over the composition window.

INFO_DRAW_TEXT PF_Err INFO_DRAW_TEXT (
char *text1,
char *text2);

This displays the given text in the info window when an
object is selected in the comp window. text1 is the first line
and text2 is the second line in the info window.

INFO_GET_PORT PF_Err INFO_GET_PORT (void **cgrafptr_addr);

This returns the Macintosh grafptr for the info window so
you can draw whatever you want into it.
Adobe After Effects Software Development Kit 47

6Input & Output Plug-Ins
6 Input and Output Plug-Ins
After Effects 2.0 added, and 3.1 carries forward, support for input and
output plug-ins. Specifically, After Effects supports the Adobe Photoshop
File Format Module (hereafter: 8BIF) interface for still images and sequences
of still images. While the 8BIF specification is fine for still images, it does not
easily accommodate all the input/output options a user would want in the
After Effects environment. For example, time-based multi-frame file formats
and input/output formats which do not correspond directly with the file
system are difficult to implement with the 8BIF specification.

Starting with version 2.0.2, After Effects supports an extension of the 8BIF
specification for time-based and non-file based formats, hereafter referred
to as the FXIF specification. For example, one could write an FXIF plug-in to
talk directly to digital disk recorders or to support a file format with
multiple frame samples in one file.

This chapter describes the FXIF extension to the Adobe’s 8BIF specification. It
therefore assumes that the reader is already familiar with creating plug-ins
for Photoshop, specifically File Format Modules. If you are not, see “Image
Format Module Interface for Adobe Photoshop,” part of the Adobe
Photoshop 3.0 Plug-In Software Development Toolkit.

Please note that the 8BIF specification is different from Photoshop’s Acquire/
Export specification, though they are similar enough that if you have an
Acquire or Export plug-in, the conversion should be relatively painless.

Resource Structures

‘PiPL’ Resource Structure
Every FXIF module must have a ‘PiPL’ resource. It is identical in structure and
function to that of an 8BIF module. It should have the same resource ID as
the ‘FXMF’ code resource and the ‘FXMF’ module flag resource.

‘FXMF’ PiPL Atom
The ‘FXMF’ PiPL atom communicates information about the module that is
not described by the standard Photoshop file format specification. For
example, a plug-in uses this resource to tell the host whether or not the
format directly corresponds to the file system.
Adobe After Effects Software Development Kit 48

Input & Output Plug-Ins
Interface Record Structure

The stuff parameter contains a pointer to a FormatRecord structure, which is
identical to the structure defined in the 8BIF specification. See “Image
Format Module Interface for Adobe Photoshop” for details on each field in
the structure.

Information added for the FXIF specification can be found above the stuff
pointer in memory. The four bytes at (stuff - 4) contain a TimeInfoHandle,
and the four bytes at (stuff - 8) describe the operation (selector) the plug-in
is being asked to perform. This selector is only valid when the selector
parameter in the main entry point is set to 0.

The time-based information is placed above the stuff pointer so you may
safely ignore it in any code that you are converting from 8BIF modules. You
may wish to declare a FormatRecordTPtr called stuffT on the stack and add
the line

stuffT = (stuff - sizeof(TimeExtension))

You can then use the stuffT pointer just like the stuff pointer, except you
now have easier access to the time-extension information.

Time Extension Structures

Here is the TimeExtension structure mentioned above.

typedef struct {
long time_selector;
TimeInfoHandle time_info;

} TimeExtension;

time_selector This value is the FXIF plug-in selector. When the selector
parameter to the plug-in's entry point is 0, check this value
for the FXIF selector value. Otherwise, use the regular
selector value

time_info The time info structure is described next.

FXMF PiPL Atom

Major version (2 bytes) The major version number of the plug-in specification. This
document describes version 1 of the specification.

Minor version (2 bytes) This minor version number of the plug-in specification.

Module flags (4 bytes) Flags indicating to the host additional details about the nature
of the format. All bits which are not specified must be set to
zero. Note that some of these flags are redundant with
information in the PiPL. Wherever the two differ, the Module
Flags will be used. Please see the header file and the PiPL
template for the definition of the module flags.

Reserved (4 bytes) Reserved for future use. Set to zero.
Adobe After Effects Software Development Kit 49

Input & Output Plug-Ins
typedef struct {
long time_info_version;
char error_msg [PI_FORMAT_T_MESSAGE_LEN+1];
PITimeRecord duration;
PITimeRecord poster_time;
Fixed fixed_fps;
char read_name [PI_FORMAT_T_NAME_LEN+1];
char read_message [PI_FORMAT_T_MESSAGE_LEN+1];
long start_smpte_frames;
short time_base;
char reel_name[16];
PITimeRecord read_time;
PITimeRecord read_dur;
Rect read_rect;
char write_name [PI_FORMAT_T_NAME_LEN+1];
char write_message [PI_FORMAT_T_MESSAGE_LEN+1];
Fixed write_fixed_fps;
PITimeRecord write_duration;
long frame_num_to_add;
long frames_to_add;
Boolean was_compressed;
long origin_h;
long origin_v;
PIAlphaLabel alpha_label;
FIEL_Label interlace_label;

} TimeInfo, *TimeInfoPtr, **TimeInfoHandle;

The TimeInfo handle is used to communicate time information between the
plug-in and the host. It is primarily used as a communication mechanism. In
After Effects, the contents of the TimeInfo handle are not saved to disk as
part of the project file and need to be recreated by the plug-in each time
the saved project is opened. For a non-file module though, you want to be
able to save information that might have required lengthy user-interaction.
Thankfully, the standard 8BIF specification provides a way to do this via the
revertInfo field in the FormatRecord. You may therefore want to store a
duplicate of the TimeInfo handle in your private revertInfo. (Note, however,
that revertInfo must be a flat structure, i.e. there should be no pointers or
handles hanging off of it.)

time_info_version The high word is the major version and the low word is the
sub-version.

error_msg Set this to a non-null string with *result is an error code. This
will cause the host to bring up an alert dialog.

duration Set this field to the length of the input sequence. When the
plug-in is first called for a given input sequence, this value
will be invalid (duration.value and duration.scale will be 0.)
For each read thereafter, it will be set to the value you first
set it to. Set duration in the Read calling sequence.

poster_time Set this field to the time you wish to be the “thumbnail”
time for the input sequence. When the plug-in is first called
for a given input sequence, this value will be invalid
(duration.value and duration.scale will be 0.) Set poster_time
in the Read calling sequence.

fixed_fps Set this field to the (fixed-point) frame-rate of the input
sequence during the Read calling sequence.

read_name Fill this field with the name of your input sequence during
the Read sequence. This is provided so that input sequences
which do not correspond to a file can have a meaningful
Adobe After Effects Software Development Kit 50

Input & Output Plug-Ins
identifier in the host. The first time the Read sequence is
called, this field will be the null-string.

read_message Fill this field with any additional textual information you
want to provide during the Read sequence. For example, you
may want to specify the codec of a QuickTime movie in this
field. The first time the Read sequence is called for a given
input sequence, this field will be the null-string.

start_smpte_frames, time_base, reel_name

These fields are currently ignored by After Effects, but you
may find them useful. (They will stick around for the current
instance of the input sequence, but they are not saved out to
disk. If you need such information to be more permanent,
store it in your revertInfo handle in the FormatRecord
structure and it will be saved to disk.)

read_time In the Read sequence, this structure will be set to the time of
the desired frame.

read_dur In the Read sequence, this structure will be set to the
duration of the desired frame. This would allow, for
example, a plug-in which could integrate multiple frames
temporally.

read_rect In the Read sequence, this structure will be set to the entire
buffer.

write_name Fill this field with the name of your output sequence during
the Options sequence. This is provided so that output
sequences which do not correspond to a file can have a
meaningful identifier in the host. The first time the Options
sequence is called, this field will be the null-string.

write_message Fill this field with any additional textual information for
output during the Options sequence. For example, you may
want to specify the codec of a QuickTime movie in this field.
The first time the Options sequence is called for a given input
sequence, this field will be the null-string.

frame_num_to_add During the Write sequence this field will contain the frame
number which is to be added to the output sequence. If it’s
set to -1, add this frame as the next frame in the file.

frames_to_add During the Write sequence this field will contain the
duration of the frame to be added (in frame numbers at the
current frame-rate.)

was_compressed Set to TRUE during the write sequence if the image data
being passed has previously been compressed and
decompressed. Some compression schemes want to know
this.

origin_h, origin_v Reserved for future use.
Adobe After Effects Software Development Kit 51

Input & Output Plug-Ins
alpha_label This structure will contain a description of the alpha channel
information of the buffers handed to the Write sequence.
You can use this for labeling purposes, or you may need to
know alpha information to conform the output to your
device or file format.

interlace_label This structure will contain a description of the field
information of the buffers handed to the Write sequence.
You can use this for labeling purposes, or you may need to
know field order information to conform the output to your
device or file format.

Calling Sequences

The FXIF specification uses the same prepare-start-continue-finish calling
sequence that the 8BIF specification provides. FXIF plug-ins must support all
of the calling sequences that 8BIF plug-ins support — read, estimate,
options, and write.

The FXIF specification adds four more calling sequences. These new calling
sequences follow the same conventions as the 8BIF calling sequences. See
“Calling Sequences” in the Adobe 8BIF plug-in specification for details on
the four stages of each calling sequence.

One sequence, the “Setup” sequence, is called at the launch of the host. This
gives the plug-in the chance to initialize communication with hardware, set
up globals, or anything else that the plug-in writer wants to do.

At the close of the host’s session, the “Setdown” sequence is called. This
gives the plug-in the chance to clean up any operations that were performed
in Setup.

The “Read” sequence remains essentially the same. One difference is the
plug-in is provided with time information so it can read a specific frame
from a file or device. Additional fields in the TimeInfo handle are provided
so the plug-in can communicate time-based and other descriptive
information back to the host.

The “Estimate” sequence is unchanged from the 8BIF specification.

The “Options” sequence is slightly different in After Effects. After Effects
may need to display options information about an output sequence without
actually bringing up the dialog. It does this by calling the Read-Start-Prepare
sequence for Options without calling the Continue selector. This gives the
plug-in the chance to translate its revertInfo handle (and other state
information) into a form that After Effects can understand and display to
the user. A true “options” sequence will call all the Continue selector, where
you can bring up your dialog. As an example, consider a non-file based plug-
in. The standard 8BIF specification is at a loss for the name of the output,
because the name of the output is the name of the file. The FXIF mini-
options sequence gives the plug-in a chance to fill in the blanks.

Two additional sequences have been added to accommodate writing
multiple samples to files. Before a writing session begins, the “BeginAdd”
sequence is called. This gives the plug-in a chance to do any initialization to
the file or device before any video information is added.
Adobe After Effects Software Development Kit 52

Input & Output Plug-Ins
The “Write” sequence remains the same except the plug-in is given the time
and duration of the frame to add.

The “EndAdd” sequence allows the plug-in to finish an output sequence.
The plug-in should clean up any operations performed in “BeginAdd.”

Other notes

A bug in After Effects 2.0.2 prevented error values returned from the Write
sequence from halting the rendering process. This was fixed in After Effects
3.0.

The ProcessEvent callback is not supported in After Effects 3.0.
Adobe After Effects Software Development Kit 53

7Special Considerations
7 Special Considerations
The Adobe After Effects plug-in specification can be a bit intimidating,
especially if you’re writing a plug-in from scratch. This section describes a
few things you should look out for when writing an effect — those parts of
the specification which are especially subtle, tricky, or unique to the After
Effects paradigm.

Extent Rects

If you use the extent-rectangle information to speed up processing of your
effect (and you should, if you can) be sure to tell After Effects by setting
PF_OutFlag_USE_OUTPUT_EXTENT. If you use in_data->extent_hint, set them
both; this rectangle is the intersection of the output and input extent rects.
If these flags are set improperly, caching of effect output will not be as
efficient.

Before testing your extent-rect code, disable the effect cache. Hold down
the option key and choose General Preferences from the Edit menu. A
checkbox should appear which allows you to disable the layer cache. After
Effects will then render your effect whenever anything in your composition
changes. This ensures that After Effects re-renders your effect each time one
of the extents changes; otherwise, there may be cases where your code
doesn’t work and AE’s caching mechanism will obscure them.

Move the layer within the composition boundaries such that it is cropped by
the composition. The output->extent_hint is portion of the layer which is
visible in the composition. Add a mask to your layer and move it around.
This changes the params[0]->u.ld.extent_hint, which encloses all of the non-
zero alpha areas of the image.

The in_data->extent_hint is the intersection of these two rectangles. It
(potentially) changes whenever either of the above rectangles changes.

If you write an effect that resizes its output buffer (smaller or larger), extent
rect handling can be kind of tricky. Extent rectangles are computed in the
coordinate space of the original input layer, before its resizing and origin
shifting. If you keep that in mind, that can simplify things somewhat.

Another thing to consider when writing a “resizer” effect is that PF_World’s
are limited to 4000x4000 pixels. Make sure to account for the downsampling
factor when you compute the output size — users should be able to render a
full resolution version without the output buffer exceeding 4000x4000. If it
does, you can either clamp it to that size or issue an alert dialog. (See “Error
Handling” for details)

Once you’re certain that your code behaves properly, re-enable the cache
and see how frequently the effect needs to re-render. If you have a
particularly slow effect, you may want to alter the extent flags that you set.
(An example is the Drop Shadow effect. Because users frequently apply a
static drop shadow to a still image, it was decided that the output extent-
hint would be ignored so that the cache would be hit more often.)
Adobe After Effects Software Development Kit 54

Special Considerations
Alpha Channels

After Effects 2.0 supported two alpha modes – straight mode and premul
mode. This was selected by checking the “Extra Color Precision” checkbox in
the General Preferences dialog box. In After Effects 3.x, “Extra Color
Precision” is always on, so now only straight mode is supported.

Parameter Situations

If your effect uses random functions, or varies based on an implicit
parameter such as time, be sure to set the PF_OutFlag_NON_PARAM_VARY
at GLOBAL_SETUP or else After Effects will mistakenly cache your effect’s
output with still footage items, such as PICT files.

If you use the value of any parameter at a different time, such as a video
from another time, set the PF_OutFlag_WIDE_TIME_INPUT at GLOBAL_SETUP
time. Otherwise, After Effects’ caching mechanism could bite you.

If your slider doesn’t seem to be usable, look at the valid_min, slider_min,
valid_max and slider_max fields. Is it a fixed slider? If so, did you convert
your min’s and max’s to reasonable fixed values? (I don’t know how many
times I’ve set def.u.fd.valid_max = 100, which of course means that the
largest possible value is about 0.0015.)

If you use sliders (or other controls) that have explicit or implicit pixel
dimensions in them, account for the downsample factor in your calculations.
Test at 1/2, 1/4, and custom resolutions and compare the output. Try
differing horizontal and vertical downsample factors too. The “resizer”
sample effect shows you what happens when you properly and improperly
deal with different resolutions.

Be careful if one of your parameters is a speed or velocity parameter.
Consider the ripple effect. It assumes a constant and uses the current time to
determine how far along the ripple has gone. (d = v * t.) Now if the user
interpolates the speed over time, the proper thing to do would be to
integrate the velocity function from time zero to the current time. Ripple
does not do this, but provides a “phase” parameter that the user can
interpolate to her heart’s content instead, providing correct results as long
as the speed is set to zero. If you want to provide the correct behavior, you
can sample (and integrate) the speed parameter from the beginning of time
until the current time using PF_CHECKOUT_PARAM, or you can provide a
“phase” or “distance” parameter and warn the user about interpolating the
speed. We've found that the speed of checking out many parameter values is
pretty negligible compared to rendering and therefore recommended for
cases like this.

If you check out parameter values at other times, or use layer parameters at
all, please be sure to check in a parameter when you’re done with them,
even if an error has occurred since you checked it out. And remember,
checked out parameters should be considered read only.

Sequence Data

If you use sequence data you might want your handles to be “flat” because
After Effects will write sequence data out to disk with a project. If you
Adobe After Effects Software Development Kit 55

Special Considerations
choose to have pointers or other handles inside your sequence data, set the
PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING flags at GLOBAL_SETUP
time. See the comment in AE_Effects.h under “Output Flags” for a full
description of the flatten/unflatten situation.

If your global data changes from invocation to invocation, be sure to set the
PF_OutFlag_GLOBALS_ARE_CHANGABLE flag at GLOBAL_SETUP time.

Error Handling

Be sure to check error codes from all of the PF callback routines. If an error
is returned, it’s probably a user interrupt and you should abort the rest of
the routine, but be sure to dispose of any PF_Worlds or other memory you’ve
allocated. Also, don’t forget to check in any parameters you’ve checked out.

If an error is returned from PF_NEW_WORLD or a Macintosh Toolbox
routine, you can report the error to the user by copying a string into
out_data->return_msg and setting PF_OutFlag_DISPLAY_ERROR_MESSAGE.

Debugging

While developing your plug-in you’ll probably want to test it, make a few
changes, and run it again. It is not necessary to quit After Effects each time.
You can replace your plug-in code in the After Effects plug-in folder and ask
After Effects to reload it by pressing the Control and Clear keys
simultaneously. This won’t load any new plug-ins, it just asks After Effects to
reload any plug-ins that were present when After Effects started up.

Be Responsive

Try and make your plug-ins as responsive as possible, call Abort and Progress
frequently. This is reasonably safe because After Effects will check and
return immediately if it thinks you’re calling them to often, but it’s still a
good idea not to over do it!

Adding Parameters

A fairly common problem is failing to completely clear out a PF_ParamDef
structure prior to filling it in and calling PF_ADD_PARAM. If you (or your
users) see any of the following After Effects messages when applying your
filter:

Effect control conversion problem
Problem with Effect Control
Some of the Controls of the effects will be reset

or you find your filter loosing some of its settings, then this is likely the
problem. A simple solution is to call the macro AEFX_CLR_STRUCT with your
PF_ParamDef structure as the only parameter, prior to filling it in. This
Adobe After Effects Software Development Kit 56

Special Considerations
macro will clear the structure for you. This is demonstrated in the latest
versions of the plug-in samples packaged with the SDK.
Adobe After Effects Software Development Kit 57

Index
Index
*gdeviceH . 45

alpha_label . 52

appl_id . 18

area . 45

cbs . 42

cgrafptr . 42

char_code . 45

COMP_TO_LAYER . 46

contextH . 41

continue_refcon . 44

current_frame . 45

current_time . 19

data . 27

depth . 44

downsample_x, downsample_y . 20

duration. 50

e_type . 41

effect_ref . 18

effect_win . 42

error_msg . 50

evt_in_flags . 42

evt_out_flags. 42

extent_hint . 20

extent_hint . 27

field . 19

fixed_fps . 50

flat_sdata_size. 23

frame_data . 23

frame_num_to_add . 51

FRAME_TO_SOURCE . 47

frames_to_add . 51

get_callback_addr . 37

GET_COMP2LAYER_XFORM . 46

GET_LAYER2COMP_XFORM . 46

GET_PLATFORM_REFS. 37

global_data . 22

global_data, sequence_data, frame_data . 20

horiz_offset . 46

in_flags . 20

index . 45

INFO_DRAW_COLOR. 47

INFO_DRAW_TEXT . 47

INFO_GET_PORT . 47

inter . 18

interlace_label. 52

key_code . 45

last_time . 44

LAYER_TO_COMP . 46
Adobe After Effects Software Development Kit 58

Index
local_time_step . 19

magic . 42

modifiers . 44

modifiers . 45

my_version. 22

name . 22

num_clicks . 44

num_params . 18

num_params . 22

origin_h, origin_v . 51

out_flags . 23

output_origin_x, output_origin_y . 20

param_title_frame . 46

PF_ABORT . 28

PF_ACOS . 37

PF_ADD_PARAM . 28

PF_AREA_SAMPLE . 32

PF_ASIN . 37

PF_ATAN . 37

PF_ATAN2 . 37

PF_BLEND. 32

PF_CEIL. 37

PF_CHECKIN_LAYER_AUDIO. 30

PF_CHECKIN_PARAM . 29

PF_CHECKOUT_LAYER_AUDIO. 30

PF_CHECKOUT_PARAM . 29

PF_Cmd_ABOUT . 13

PF_Cmd_DO_DIALOG . 14

PF_Cmd_EVENT . 15

PF_Cmd_FRAME_SETDOWN . 15

PF_Cmd_FRAME_SETUP . 14

PF_Cmd_GLOBAL_SETDOWN . 13

PF_Cmd_GLOBAL_SETUP . 13

PF_Cmd_PARAMS_SETUP . 14

PF_Cmd_PARAMS_UPDATE . 15

PF_Cmd_RENDER. 15

PF_Cmd_SEQUENCE_FLATTEN . 14

PF_Cmd_SEQUENCE_RESETUP . 14

PF_Cmd_SEQUENCE_SETDOWN . 14

PF_Cmd_SEQUENCE_SETUP . 14

PF_CONVOLVE. 33

PF_COPY . 33

PF_COS . 37

PF_DISPOSE_WORLD . 36

PF_Event_ACTIVATE . 43

PF_Event_CLOSE_CONTEXT . 43

PF_Event_DEACTIVATE . 43

PF_Event_DO_CLICK . 43

PF_Event_DRAG. 43
Adobe After Effects Software Development Kit 59

Index
PF_Event_DRAW . 43

PF_Event_IDLE . 43

PF_Event_KEYDOWN . 43

PF_Event_NEW_CONTEXT. 43

PF_EXP . 38

PF_FABS . 38

PF_FILL . 33

PF_FLOOR . 38

PF_FMOD . 38

PF_GAUSSIAN_KERNEL . 33

PF_GET_AUDIO_DATA . 30

PF_HLS_TO_RGB . 39

PF_HUE. 39

PF_HYPOT . 38

PF_ITERATE . 34

PF_ITERATE_LUT . 35

PF_ITERATE_ORIGIN . 35

PF_LIGHTNESS . 40

PF_LOG. 38

PF_LOG10. 38

PF_LUMINANCE . 39

PF_NEW_WORLD. 36

PF_OutFlag_CUSTOM_NTRP . 26

PF_OutFlag_CUSTOM_UI . 26

PF_OutFlag_DISPLAY_ERROR_MESSAGE . 25

PF_OutFlag_I_AM_OBSOLETE. 27

PF_OutFlag_I_DO_DIALOG . 25

PF_OutFlag_I_EXPAND_BUFFER . 25

PF_OutFlag_I_SHRINK_BUFFER. 26

PF_OutFlag_I_USE_AUDIO . 26

PF_OutFlag_I_USE_SHUTTER_ANGLE . 26

PF_OutFlag_I_WRITE_INPUT_BUFFER. 26

PF_OutFlag_KEEP_RESOURCE_OPEN . 24

PF_OutFlag_NON_PARAM_VARY. 24

PF_OutFlag_NONE. 24

PF_OutFlag_NOP_RENDER . 26

PF_OutFlag_PIX_INDEPENDENT . 26

PF_OutFlag_REFRESH_UI. 26

PF_OutFlag_SEND_DO_DIALOG . 25

PF_OutFlag_SEND_PARAMS_UPDATE . 24

PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING . 24

PF_OutFlag_SQUARE_PIX_ONLY . 26

PF_OutFlag_USE_OUTPUT_EXTENT . 25

PF_OutFlag_WIDE_TIME_INPUT . 24

PF_OutFlag_WORKS_IN_PLACE . 26

PF_Param_ANGLE . 21

PF_Param_CHECKBOX. 21

PF_Param_COLOR . 21

PF_Param_LAYER . 20
Adobe After Effects Software Development Kit 60

Index
PF_Param_POINT . 21

PF_Param_POPUP . 21

PF_Param_SLIDER, PF_Param_FIX_SLIDER . 21

PF_POW . 38

PF_PREMUL . 36

PF_PREMUL_COLOR . 36

PF_PROGRESS . 28

PF_REGISTER_UI. 29

PF_RGB_TO_YIQ . 39

PF_SATURATION . 40

PF_SIN . 38

PF_SPRINTF . 38

PF_SQRT . 38

PF_STRCPY . 38

PF_SUBPIXEL_SAMPLE. 32

PF_TAN. 38

PF_TRANSFER_RECT . 35

PF_TRANSFORM_WORLD . 36

PF_YIQ_TO_RGB . 39

pixel_aspect_ratio . 20

platform_ref . 28

plugin_state. 42

poster_time . 50

qd_globals . 19

quality . 18

read_dur . 51

read_message . 51

read_name. 50

read_rect . 51

read_time . 51

reserved_flt . 42

return_msg . 23

RGB_TO_HLS . 39

rowbytes . 27

screen_point . 44

screen_point . 45

send_drag . 44

sequence_data . 23

serial_num . 18

shutter_angle . 19

SOURCE_TO_FRAME . 47

start_smpte_frames, time_base, reel_name . 51

time_info . 49

time_info_version . 50

time_scale . 19

time_selector . 49

time_step . 19

total_time . 19

u . 42
Adobe After Effects Software Development Kit 61

Index
update_rect . 44

utils . 18

version . 18

w_type . 42

was_compressed . 51

what_cpu . 18

what_fpu . 19

when . 44

when . 45

width, height. 19

width, height. 27

width, height, origin. 23

world_flags . 27

write_message. 51

write_name . 51
Adobe After Effects Software Development Kit 62

PostScript error (--nostringval--, --nostringval--)

	Contents
	1 Introduction
	How to Use This Guide
	About This Guide
	Changes Since the Last Release

	2 Plug-In Overview
	The After Effects Pipeline
	Key to the Diagram

	Where Plug-ins Are Found
	How Plug-ins Are Invoked
	Writing Plug-ins
	Command Selectors
	Global Commands
	PF_Cmd_ABOUT
	PF_Cmd_GLOBAL_SETUP
	PF_Cmd_GLOBAL_SETDOWN
	PF_Cmd_PARAMS_SETUP

	Sequence Commands
	PF_Cmd_SEQUENCE_SETUP
	PF_Cmd_SEQUENCE_RESETUP
	PF_Cmd_SEQUENCE_FLATTEN
	PF_Cmd_SEQUENCE_SETDOWN

	Frame Commands
	PF_Cmd_DO_DIALOG
	PF_Cmd_FRAME_SETUP
	PF_Cmd_RENDER
	PF_Cmd_FRAME_SETDOWN
	PF_Cmd_PARAMS_UPDATE

	User Interface Command
	PF_Cmd_EVENT

	3 Plug-In Resources
	4 Effects Filters
	Effect Input
	PF_InData Structure
	inter
	utils
	effect_ref
	quality
	version
	serial_num
	appl_id
	num_params
	what_cpu
	what_fpu
	qd_globals
	current_time
	time_step
	total_time
	local_time_step
	time_scale
	field
	shutter_angle
	width, height
	extent_hint
	output_origin_x, output_origin_y
	downsample_x, downsample_y
	pixel_aspect_ratio
	in_flags
	global_data, sequence_data, frame_data

	PF_ParamsList Array of Parameter Descriptions
	PF_Param_LAYER
	PF_Param_SLIDER, PF_Param_FIX_SLIDER
	PF_Param_ANGLE
	PF_Param_CHECKBOX
	PF_Param_COLOR
	PF_Param_POINT
	PF_Param_POPUP

	Effect Output
	PF_OutData Structure
	my_version
	name
	global_data
	num_params
	sequence_data
	flat_sdata_size
	frame_data
	width, height, origin
	out_flags
	return_msg

	PF_OutFlags
	PF_OutFlag_NONE
	PF_OutFlag_KEEP_RESOURCE_OPEN
	PF_OutFlag_WIDE_TIME_INPUT
	PF_OutFlag_NON_PARAM_VARY
	PF_OutFlag_SEND_PARAMS_UPDATE
	PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING
	PF_OutFlag_I_DO_DIALOG
	PF_OutFlag_USE_OUTPUT_EXTENT
	PF_OutFlag_SEND_DO_DIALOG
	PF_OutFlag_DISPLAY_ERROR_MESSAGE
	PF_OutFlag_I_EXPAND_BUFFER
	PF_OutFlag_PIX_INDEPENDENT
	PF_OutFlag_I_WRITE_INPUT_BUFFER
	PF_OutFlag_I_SHRINK_BUFFER
	PF_OutFlag_WORKS_IN_PLACE
	PF_OutFlag_SQUARE_PIX_ONLY
	PF_OutFlag_CUSTOM_UI
	PF_OutFlag_CUSTOM_NTRP
	PF_OutFlag_REFRESH_UI
	PF_OutFlag_NOP_RENDER
	PF_OutFlag_I_USE_SHUTTER_ANGLE
	PF_OutFlag_I_USE_AUDIO
	PF_OutFlag_I_AM_OBSOLETE

	PF_LayerDef Structure
	world_flags
	data
	rowbytes
	width, height
	extent_hint
	platform_ref

	Callbacks
	User Interaction Related Callbacks
	PF_ADD_PARAM
	PF_ABORT
	PF_PROGRESS
	PF_CHECKOUT_PARAM
	PF_CHECKIN_PARAM
	PF_REGISTER_UI
	PF_CHECKOUT_LAYER_AUDIO
	PF_CHECKIN_LAYER_AUDIO
	PF_GET_AUDIO_DATA

	Kernel Flags
	Graphics Utility Callbacks
	PF_SUBPIXEL_SAMPLE
	PF_AREA_SAMPLE
	PF_BLEND
	PF_CONVOLVE
	PF_COPY
	PF_FILL
	PF_GAUSSIAN_KERNEL
	PF_ITERATE
	PF_ITERATE_ORIGIN
	PF_ITERATE_LUT
	PF_TRANSFER_RECT
	PF_TRANSFORM_WORLD
	PF_PREMUL
	PF_PREMUL_COLOR
	PF_NEW_WORLD
	PF_DISPOSE_WORLD
	GET_PLATFORM_REFS
	get_callback_addr

	Intrinsic Callbacks
	PF_ACOS
	PF_ASIN
	PF_ATAN
	PF_ATAN2
	PF_CEIL
	PF_COS
	PF_EXP
	PF_FABS
	PF_FLOOR
	PF_FMOD
	PF_HYPOT
	PF_LOG
	PF_LOG10
	PF_POW
	PF_SIN
	PF_SQRT
	PF_TAN

	ANSI Callbacks
	PF_SPRINTF
	PF_STRCPY

	Colorspace Conversion Callbacks
	RGB_TO_HLS
	PF_HLS_TO_RGB
	PF_RGB_TO_YIQ
	PF_YIQ_TO_RGB
	PF_LUMINANCE
	PF_HUE
	PF_LIGHTNESS
	PF_SATURATION

	5 Custom User Interface
	Getting UI Events
	contextH
	e_type
	u
	effect_win
	cbs
	evt_in_flags
	evt_out_flags
	PF_Context Structure
	magic
	w_type
	cgrafptr
	reserved_flt
	plugin_state

	Event Types (PF_EventType)
	PF_Event_NEW_CONTEXT
	PF_Event_ACTIVATE
	PF_Event_DO_CLICK
	PF_Event_DRAG
	PF_Event_DRAW
	PF_Event_DEACTIVATE
	PF_Event_CLOSE_CONTEXT
	PF_Event_IDLE
	PF_Event_KEYDOWN

	Event Unions (PF_EventUnion)
	Click Event
	when
	screen_point
	num_clicks
	modifiers
	continue_refcon
	send_drag
	last_time

	Draw Event
	update_rect
	depth
	*gdeviceH

	Key Down Event
	when
	screen_point
	char_code
	key_code
	modifiers

	Effect Window Information (PF_EffectWindowInfo)
	index
	area
	current_frame
	param_title_frame
	horiz_offset

	UI Callbacks (PF_EventCallbacks)
	LAYER_TO_COMP
	COMP_TO_LAYER
	GET_COMP2LAYER_XFORM
	GET_LAYER2COMP_XFORM
	SOURCE_TO_FRAME
	FRAME_TO_SOURCE
	INFO_DRAW_COLOR
	INFO_DRAW_TEXT
	INFO_GET_PORT

	6 Input and Output Plug-Ins
	Resource Structures
	 PiPL’ Resource Structure
	 FXMF’ PiPL Atom

	Interface Record Structure
	Time Extension Structures
	time_selector
	time_info
	time_info_version
	error_msg
	duration
	poster_time
	fixed_fps
	read_name
	read_message
	start_smpte_frames, time_base, reel_name
	read_time
	read_dur
	read_rect
	write_name
	write_message
	frame_num_to_add
	frames_to_add
	was_compressed
	origin_h, origin_v
	alpha_label
	interlace_label

	Calling Sequences
	Other notes

	7 Special Considerations
	Extent Rects
	Alpha Channels
	Parameter Situations
	Sequence Data
	Error Handling
	Debugging
	Be Responsive
	Adding Parameters

	Index

